J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 637-645.doi: 10.1007/s12204-024-2580-z
收稿日期:
2023-11-29
接受日期:
2023-11-29
出版日期:
2025-07-31
发布日期:
2025-07-31
孙畅,王绍虹,林艳萍
Received:
2023-11-29
Accepted:
2023-11-29
Online:
2025-07-31
Published:
2025-07-31
摘要: 调频连续波雷达可以在非接触且保护隐私的前提下实现人体行为特征识别,但人体姿态与雷达的空间位置关系直接影响识别精度。为了解决人体在非正面面对雷达时行为识别准确率低的问题, 提出了一种局部离群因子与多普勒信息相结合的方法,应用于多分类器识别结果的修正。首先通过快速傅里叶变换和梯度方向直方图-支持向量机方法得到目标的距离、速度、微多普勒图等信息并进行初步识别,然后利用普拉特缩放将识别结果转化为置信度,最后使用多普勒-局部离群因子方法对置信度进行校正,以置信度最高的分类器结果作为识别结果。实验结果表明,该方法对人体行为全方位的平均识别准确率可以达到96.23%。
中图分类号:
. 基于调频连续波雷达的全方位人体行为识别方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 637-645.
Sun Chang, Wang Shaohong, Lin Yanping. Omnidirectional Human Behavior Recognition Method Based on Frequency-Modulated Continuous-Wave Radar[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 637-645.
[1] ZHANG N, LI H, YU J, et al. Research progress of radar technology for non-contact vital sign detection [J]. Semiconductor Technology, 2023, 48(1): 1-9 (in Chinese). [2] LI Z, QUAN J, JIN H. Mine personnel behavior recognition algorithm based on 3D-Attention and multi-scale [J]. Foreign Electronic Measurement Technology, 2023, 42(07): 95-104 (in Chinese). [3] LIU T, LU Z, SUN Y, et al. Working activity recognition approach based on 3D deep convolutional neural network [J]. Computer Integrated Manufacturing Systems, 2019, 26(8): 2143-2156 (in Chinese). [4] GUO Y, MENG W, FAN Y, et al. Wearable sensor data based human behavior recognition: A method of data feature extraction [J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(8): 1246-1253 (in Chinese). [5] FENG W G, LIU R, ZHU M. Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera [J]. Signal, Image and Video Processing, 2014, 8(6): 1129-1138. [6] ZENG X Z, BáRUSON H S L, SUNDVALL A. Walking step monitoring with a millimeter-wave radar in real-life environment for disease and fall prevention for the elderly [J]. Sensors, 2022, 22(24): 9901. [7] CHEN J X, WANG T, FANG Z Y, et al. Research on elderly users' intentions to accept wearable devices based on the improved UTAUT model [J]. Frontiers in Public Health, 2023, 10: 1035398. [8] KARA A. Protecting privacy in remote-patient monitoring [J]. Computer, 2001, 34(5): 24-27. [9] SHAH S A, TAHIR A, LE KERNEC J, et al. Data portability for activities of daily living and fall detection in different environments using radar micro-Doppler [J]. Neural Computing and Applications, 2022, 34(10): 7933-7953. [10] TIAN Z, YANG L, FU C, et al. Human action recognition based on multi-antenna FMCW radar [J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(5): 779-787 (in Chinese). [11] FENG X, LI W, HE Z, et al. Human posture recognition based on multi-dimensional information feature fusion of frequency modulated continuous wave radar [J]. Journal of Electronics and Information Technology, 2022, 44(10): 3583-3591 (in Chinese). [12] SHRESTHA A, LI H B, LE KERNEC J, et al. Continuous human activity classification from FMCW radar with Bi-LSTM networks [J]. IEEE Sensors Journal, 2020, 20(22): 13607-13619. [13] XU Z, YIN H, LIN J. Two-persons activity recognition method for FMCW radar based on spatial information clustering [J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(4): 445-450 (in Chinese). [14] NALCI D, AKGUL Y S. Human action recognition with raw millimeter wave radar data [C]//2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications. Ankara. IEEE, 2022: 1-5. [15] CHEN X, YE N, XU K, et al. FMCW radar human action recognition system based on EfficientNet model [J]. Computer Technology and Development, 2002, 32(9): 134-141 (in Chinese). [16] LIU K, ZHONG P, XU D, et al. Tangent-based rectified linear unit [J]. Journal of Computer Integrated Manufacturing Systems, 2020, 26(1): 145-151 (in Chinese). [17] ZHOU M, WANG Y. Application of improved adaptive algorithm in Harmonic detection [J]. Manufacturing Automation, 2015, 37(23): 95-98 (in Chinese). [18] SUN Y, AI J, QU L. A hand gesture recognition method based on continuous wave radar [J]. Telecommunication Engineering, 2021, 61(7): 815-820 (in Chinese). [19] GUO X, HU G, YANG X. Vehicle detection method based on Radar and visual feature fusion[J]. Internet of Things Technologies, 2022, 12(2): 7-11 (in Chinese). [20] Xu W, Zhou P, Zhang F, et al. Pedestrian recognition algorithm based on information fusion of visual and millimeter wave radar [J]. Journal of Tongji University (Natural Science), 2017, 45(Sup.1): 37-42 (in Chinese). |
[1] | 施裕升, 王晓科, 周宇泰, 蒋国韬, 徐天洋. 基于卡方检验与SVM的多雷达抗欺骗干扰方法[J]. 空天防御, 2022, 5(1): 108-114. |
[2] | 肖冉, 魏子清, 翟晓强. 基于支持向量机的办公建筑逐时能耗预测[J]. 上海交通大学学报, 2021, 55(3): 331-336. |
[3] | 朱东, 姜萍萍, 颜国正, 王志武, 韩玎, 赵凯, 华芳芳, 姚盛健, 丁紫凡, 周泽润. 人工肛门括约肌系统便意感知重建[J]. 上海交通大学学报, 2020, 54(8): 771-777. |
[4] | 徐彬彬, 洪榛, 赵磊, 俞立. 网络化倒立摆系统的偏差攻击及其检测方法[J]. 上海交通大学学报, 2020, 54(7): 697-704. |
[5] | 陶正瑞, 党嘉强, 徐锦泱, 安庆龙, 陈明, 王力, 任斐. 基于支持向量机回归的曲面零件涡流测距标定方法[J]. 上海交通大学学报, 2020, 54(7): 674-681. |
[6] | 杜晨阳, 沈俊逸, 刘扬扬, 李晨, 陈晨. 基于时频分析与相关系数算法的目标探测与距离估计方法研究[J]. 空天防御, 2020, 3(3): 71-77. |
[7] | 胡晓强,仲训昱,张霄力,彭侠夫,何荧. 基于支持向量机辅助的四轴陀螺两级故障诊断方法[J]. 上海交通大学学报, 2020, 54(11): 1151-1156. |
[8] | 王江卓,徐文聪,李建勋,贺丰收,曹兰英,缪礼锋. 基于支持向量机的雷达电子支援措施系统点迹-航迹关联算法[J]. 上海交通大学学报, 2019, 53(9): 1091-1099. |
[9] | 马志宏,贡亮,林可,毛雨晗,吴伟,刘成良. 基于稻穗几何形态模式识别的在穗籽粒数估测[J]. 上海交通大学学报(自然版), 2019, 53(2): 239-246. |
[10] | 李春祥,裴杨从琪,殷潇. 基于Hermite组合核EMD-WT-LSSVM的非平稳非高斯风压预测[J]. 上海交通大学学报, 2019, 53(10): 1249-1258. |
[11] | 李春祥,殷潇. 基于小波支持向量机的非高斯空间风压内外插预测[J]. 上海交通大学学报, 2018, 52(11): 1516-1523. |
[12] | 徐峰1,范春菊1,徐勋建2,李丽2,倪佳筠3. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395. |
[13] | 马天亮,徐添翼,高益,蔡萍. 基于支持向量机的热轧主电机风冷变频策略[J]. 上海交通大学学报, 2017, 51(5): 542-. |
[14] | 弓鹏伟1,费燕琼1,3,宋立博2. 基于多传感器信息融合的轮履混合移动机器人路况识别方法[J]. 上海交通大学学报, 2017, 51(4): 398-. |
[15] | 焦学军,张朕,姜劲,王春慧,杨涵钧,徐凤刚,曹勇,傅嘉豪. 基于功能性近红外光谱技术的脑机接口[J]. 上海交通大学学报, 2017, 51(12): 1456-1463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||