上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (10): 1388-1395.doi: 10.16183/j.cnki.jsjtu.2018.10.030
徐峰1,范春菊1,徐勋建2,李丽2,倪佳筠3
发布日期:
2025-07-02
通讯作者:
范春菊,女,副教授,电话(Tel.): 021-34204290;E-mail:fanchunju@sjtu.edu.cn.
作者简介:
徐峰(1992-),男,安徽省六安市人,硕士生,主要从事电力系统保护与控制研究. E-MAIL: fengxu0520@163.com
基金资助:
U Feng,FAN Chunju,XU Xunjian,LI Li,NI Jiayun
Published:
2025-07-02
摘要: 滑坡是一种严重威胁危害居民生命财产安全的自然灾害,滑坡位移预测有助于预测滑坡等自然灾害.滑坡体监测数据的处理和预测模型的建立是滑坡位移预测的基础.针对当前时间序列分析中应用广泛的EMD、EEMD分解算法的缺陷,将具有严格数学理论支撑且分解个数可控的变分模态分解算法应用于位移时间序列分解,以获得滑坡位移子序列.将自适应变异粒子群优化算法(AMPSO)和支持向量机(SVM)相结合,构建AMPSO-SVM位移预测耦合模型.运用耦合模型对分解所得位移子序列分别进行预测,然后重构子序列预测结果得到总位移预测值.以三峡库区白水河滑坡XD1监测点为例,针对2007~2012年监测数据,设置不同情景以验证所提出预测模型的有效性及稳定性.实例分析表明,基于变分模态分解和AMPSO-SVM耦合模型对于滑坡位移的预测性能优于BP神经网络预测模型和网格搜索优化的SVM模型,在滑坡位移预测中有良好的理论基础及工程应用价值.
中图分类号:
徐峰1,范春菊1,徐勋建2,李丽2,倪佳筠3. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395.
U Feng,FAN Chunju,XU Xunjian,LI Li,NI Jiayun. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1388-1395.
[1]程温鸣, 彭令, 牛瑞卿. 基于粗糙集理论的滑坡易发性评价——以三峡库区秭归县境内为例[J]. 中南大学学报(自然科学版), 2013, 44(3): 1083-1090. CHENG Wenming, PENG Ling, NIU Ruiqing. Landslide suspectibility assessment based on rough set theory: Taking Zigui County territory in Three Gorges Reservoir for example[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1083-1090. [2]REN F, WU X, ZHANG K, et al. Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges, China[J]. Environment Earth Sciences, 2015, 73(8): 4791-4804. [3]SHIHABUDHEEN K V, PILLAI G N, PEETHAMBARAN B. Prediction of landslide displacement with controlling factors using extreme learning adaptive neuro-fuzzy inference system (ELANFIS)[J]. Applied Soft Computing, 2017, 61: 892-904. [4]HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. [5]邓冬梅, 梁烨, 王亮清, 等. 基于时间序列EEMD重构的滑坡位移PSO-SVR预测方法——以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 1001-1009. DENG Dongmei, LIANG Ye, WANG Liangqing, et al. PSO-SVR prediction method for landslide displacement based on reconstruction of time series by EEMD: A case study of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38(12): 1001-1009. [6]WU Z, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [7]CAI Z, XU W, MENG Y, et al. Prediction of landslide displacement based on GA-LSSVM with multiple factors[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 637-646. [8]ZHOU C, YIN K, CAO Y, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China [J]. Engineering Geology, 2016, 204: 108-120. [9]DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. [10]EBERHART R. KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995: 39-43. [11]吕振肃, 侯志荣. 自适应变异的粒子群优化算法[J]. 电子学报, 2004, 32(3): 416-420. L Zhensu, HOU Zhirong. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica, 2004, 32(3): 416-420. [12]VAPNIK V N. The nature of statistical learning theory [M]. 2nd ed. New York, USA: Springer-Verlag, 2000. [13]张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391. ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391. [14]陈果, 周伽. 小样本数据的支持向量机回归模型参数及预测区间研究[J]. 计量学报, 2008, 29(1): 92-96. CHEN Guo, ZHOU Jia. Research on parameters and forecasting interval of support vector regression mo-del to small sample [J]. Acta Metrologica Sinica, 2008, 29(1): 92-96. |
[1] | 徐彬彬, 洪榛, 赵磊, 俞立. 网络化倒立摆系统的偏差攻击及其检测方法[J]. 上海交通大学学报, 2020, 54(7): 697-704. |
[2] | 王江卓,徐文聪,李建勋,贺丰收,曹兰英,缪礼锋. 基于支持向量机的雷达电子支援措施系统点迹-航迹关联算法[J]. 上海交通大学学报, 2019, 53(9): 1091-1099. |
[3] | 江春冬1,2,王景玉1,杜太行1,2,郝静1,3,龙超1. 基于变分模态分解算法的单通道无线电混合信号分离[J]. 上海交通大学学报, 2018, 52(12): 1618-1626. |
[4] | 钟国强1,2,王浩1,张国华1,覃卫民1,王成汤1,2,熊俊峰1,2. 基于RS-MIV-ELM模型的基坑水平位移影响因素分析和预测[J]. 上海交通大学学报, 2018, 52(11): 1508-1515. |
[5] | 詹永祥1,姚海林1,董启朋1,王家强2,贺东平3. 松散体滑坡抗滑桩加固的土拱效应分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1372-1376. |
[6] | 张远娇1, 邢爱国1, 朱继良2. 汶川地震触发牛圈沟高速远程滑坡-碎屑流动力学特性分析[J]. 上海交通大学学报(自然版), 2012, 46(10): 1665-1670. |
[7] | 邢爱国1, 殷跃平2, 齐超1, 张明3, 黄汉杰4, 韩金良3. 高速远程滑坡气垫效应的风洞模拟试验研究 [J]. 上海交通大学学报(自然版), 2012, 46(10): 1642-1646. |
[8] | 许文锋1, 车爱兰2, 王治3, 王欢2, 刘超2. 地震荷载作用下海底滑坡特征及其机理[J]. 上海交通大学学报(自然版), 2011, 45(05): 782-786. |
[9] | 周鑫,邢爱国,陈禄俊. 易贡高速远程滑坡近程凌空飞行数值分析[J]. 上海交通大学学报(自然版), 2010, 44(06): 833-0838. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||