J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 702-708.doi: 10.1007/s12204-024-2767-3
收稿日期:
2023-10-13
接受日期:
2023-12-29
发布日期:
2025-07-31
田昊洋1,顾明诚2,李润桓2,金明雨3,彭伟1,隋晓红2
Received:
2023-10-13
Accepted:
2023-12-29
Published:
2025-07-31
摘要: 迷走神经在调节血压中起着关键作用,使迷走神经刺激成为治疗难治性高血压的一种很有前景的治疗方法。目前关于迷走神经刺激调节高血压的研究大多采用神经束外的刚性电极,对电刺激范式的探索有限。本研究采用柔性电极碳纳米管纤维电极植入大鼠左侧迷走神经,比较了占空比和脉宽刺激范式对血压的调节作用。此外,使用优化的占空比范式进行了定量电刺激实验。结果表明:低频刺激对血压的调节效果较好,而高频刺激导致呼吸暂停。与脉宽模式相比,束内迷走神经刺激在降低血压方面表现出更好的效果,最佳占空比为20%。这些发现为优化迷走神经刺激治疗高血压的方案提供了有价值的见解。
中图分类号:
. 迷走神经束内电刺激对降低血压作用的探索[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 702-708.
Tian Haoyang, Gu Mingcheng, Li Runhuan, Jin Mingyu, Peng Wei, Sui Xiaohong. Exploration of Intrafascicular Vagus Nerve Stimulation on Blood Pressure Reduction[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 702-708.
[1] MILLS K T, STEFANESCU A, HE J. The global epidemiology of hypertension [J]. Nature Reviews Nephrology, 2020, 16(4): 223-237. [2] NAGARAJAN N, JALAL D. Resistant hypertension: Diagnosis and management [J]. Advances in Chronic Kidney Disease, 2019, 26(2): 99-109. [3] BLAZEK O, BAKRIS G L. Novel therapies on the horizon of hypertension management [J]. American Journal of Hypertension, 2023, 36(2): 73-81. [4] KUNZ M, LAUDER L, EWEN S, et al. The current status of devices for the treatment of resistant hypertension [J]. American Journal of Hypertension, 2020, 33(1): 10-18. [5] LOHMEIER T E, HALL J E. Device-based neuromodulation for resistant hypertension therapy [J]. Circulation Research, 2019, 124(7): 1071-1093. [6] OGOYAMA Y, KARIO K. Patient preference and Long-term outcome of renal denervation for resistant hypertension [J]. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 2022, 45(8): 1271-1273. [7] MANCIA G, PARATI G, ZANCHETTI A. Electrical carotid baroreceptor stimulation in resistant hypertension [J]. Hypertension, 2010, 55(3): 607-609. [8] BROWNING K N, VERHEIJDEN S, BOECKXSTAENS G E. The vagus nerve in appetite regulation, mood, and intestinal inflammation [J]. Gastroenterology, 2017, 152(4): 730-744. [9] PAVLOV V A, TRACEY K J. The vagus nerve and the inflammatory reflex: Linking immunity and metabolism [J]. Nature Reviews Endocrinology, 2012, 8(12): 743-754. [10] GUO J Y, LI R H, WANG J J, et al. Blood pressure change in intrafascicular vagal activities [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(1): 47-54. [11] ARRANZ J, GUO J Y, YU X, et al. Intrafascicular vagal activity recording and analysis based on carbon nanotube yarn electrodes [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(4): 447-452. [12] JALIFE J, MOE G K. Phasic effects of vagal stimulation on pacemaker activity of the isolated sinus node of the young cat [J]. Circulation Research, 1979, 45(5): 595-608. [13] KOWALLIK P, GILMOUR R F, FLEISCHER S, et al. Different vagal modulation of the sinoatrial node and AV node in patients with congestive heart failure [J]. Clinical Science, 1996, 91(Sup.1): 58-61. [14] INOKAITIS H, PAUZIENE N, PAUZA D H. The distribution of sinoatrial nodal cells and their innervation in the pig [J]. Anatomical Record, 2023, 306(9): 2333-2344. [15] MICHAELS D C, SLENTER V A, SALATA J J, et al. A model of dynamic vagus-sinoatrial node interactions [J]. The American Journal of Physiology, 1983, 245(6): H1043-H1053. [16] STAUSS H M, KURIAN A P, ORELLANA J N, et al. Anti-inflammatory effect of noninvasive transcutaneous auricular vagus nerve stimulation and osteopathic manipulative treatment [J]. The FASEB Journal, 2020, 34(S1): 1. [17] DENG J L, LI H L, GUO Y K, et al. Transcutaneous vagus nerve stimulation attenuates autoantibody-mediated cardiovagal dysfunction and inflammation in a rabbit model of postural tachycardia syndrome [J]. Journal of Interventional Cardiac Electrophysiology, 2023, 66(2): 291-300. [18] CAPILUPI M J, KERATH S M, BECKER L B. Vagus nerve stimulation and the cardiovascular system [J]. Cold Spring Harbor Perspectives in Medicine, 2020, 10(2): a034173. [19] PLACHTA D T T, GIERTHMUEHLEN M, COTA O, et al. Blood pressure control with selective vagal nerve stimulation and minimal side effects [J]. Journal of Neural Engineering, 2014, 11(3): 036011. [20] SEVCENCU C, NIELSEN T N, STRUIJK J J. A neural blood pressure marker for bioelectronic medicines for treatment of hypertension [J]. Biosensors and Bioelectronics, 2017, 98: 1-6. [21] ANNONI E M, VAN HELDEN D, GUO Y, et al. Chronic low-level vagus nerve stimulation improves long-term survival in salt-sensitive hypertensive rats [J]. Frontiers in Physiology, 2019, 10: 25. [22] YU X, SU J Y, GUO J Y, et al. Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes [J]. Journal of Neuroscience Methods, 2019, 328: 108450. [23] RIVERA-CASTRO M E, PASTELíN C F, BRAVO-BENíTEZ J, et al. Organization of the subdiaphragmatic vagus nerve and its connection with the celiac plexus and the ovaries in the female rat [J]. Brain Sciences, 2023, 13(7): 1032. [24] KRAHL S E, SENANAYAKE S S, PEKARY A E, et al. Vagus nerve stimulation (VNS) is effective in a rat model of antidepressant action [J]. Journal of Psychiatric Research, 2004, 38(3): 237-240. [25] NOLLER C M, LEVINE Y A, URAKOV T M, et al. Vagus nerve stimulation in rodent models: An overview of technical considerations [J]. Frontiers in Neuroscience, 2019, 13: 911. [26] ALLEN E, PONGPAOPATTANAKUL P, CHAUHAN R A, et al. The effects of vagus nerve stimulation on ventricular electrophysiology and nitric oxide release in the rabbit heart [J]. Frontiers in Physiology, 2022, 13: 867705. [27] STRAUSS I, AGNESI F, ZINNO C, et al. Neural stimulation hardware for the selective intrafascicular modulation of the vagus nerve [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 4449-4458. [28] MCCALLUM G A, SUI X H, QIU C, et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes [J]. Scientific Reports, 2017, 7: 11723. |
[1] | . 骨髓间充质干细胞在不规则与规则骨组织工程支架中的组织分化比较研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 625-636. |
[2] | . 基于调频连续波雷达的全方位人体行为识别方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 637-645. |
[3] | . 特发性脊柱侧后凸的动态响应[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492. |
[4] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[5] | . 基于呼气末二氧化碳感知的气管插管方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 582-590. |
[6] | . 基于增强现实和超细径摄像头的胸腔闭式引流穿刺可视化系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 417-424. |
[7] | . 近红外胶囊机器人无线能量接收线圈优化设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[8] | . 基于Voronoi Tessellation开发的径向梯度骨支架的机械和渗透性能研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 433-445. |
[9] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[10] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[11] | 詹何庆1,韩贵来1,魏传安1,李治群2. 人工智能结合磁共振成像和计算建模在心脏电生理与临床诊断中的应用[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 53-65. |
[12] | 刘玉川1,李浩1,唐宇龙1,梁杜娟2,谭佳3,符玥1,李勇明4. 基于互信息-支持向量回归的阿尔兹海默症磁共振影像脑年龄检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 130-135. |
[13] | 叶鹏,富荣昌,王召耀. 不同节段的颈椎前路椎间盘切除和融合术中植入Cage-Plate或Zero-P融合器系统后相邻节段生物力学分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 166-174. |
[14] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[15] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||