J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (6): 1232-1241.doi: 10.1007/s12204-023-2663-2
收稿日期:2023-04-18
接受日期:2023-06-19
出版日期:2025-11-21
发布日期:2023-10-24
王国君1,2,王立业1, 王丽芳1,廖承林1
Received:2023-04-18
Accepted:2023-06-19
Online:2025-11-21
Published:2023-10-24
摘要: 电动汽车的充电负荷时空分布受到多种因素影响,预测的准确性还有待提高,建模的完备性比较缺乏。为此,提出了基于多种因素影响的电动汽车充电负荷建模方法。首先深入地分析了影响电动汽车充电负荷的因素,基于影响因素构建了电动汽车单位里程耗电量模型,然后分别建立了电动汽车、充电站、交通网、配电网模型,利用各模型之间的信息交互和耦合关系构建了车-站-路-网统一模型,最后以采集的某区域真实数据为例模拟了电动汽车充电负荷时空分布。结果表明:所构建的模型能够较为准确的模拟电动汽车不同时空分布的充电需求;不同车流量以及不同区域对充电负荷分布具有明显的影响。
中图分类号:
. 基于多种影响因素的电动汽车充电负荷建模方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1232-1241.
WANG Guojun, WANG Liye, WANG Lifang, LIAO Chenglin. Electric Vehicle Charging Load Modeling Based on Influence Factor Analysis[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1232-1241.
| [1] EHSANI M, SINGH K V, BANSAL H O, et al. State of the art and trends in electric and hybrid electric vehicles [J]. Proceedings of the IEEE, 2021, 109(6): 967-984. [2] SUN F C. Green Energy and Intelligent Transportation—Promoting green and intelligent mobility [J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100017. [3] XIONG R, KIM J, SHEN W X, et al. Key technologies for electric vehicles [J]. Green Energy and Intelligent Transportation, 2022, 1(2): 100041. [4] LIAO F, XU C Y, YAO J G, et al. Load characteristics of Changde region and analysis on its influencing factors [J]. Power System Technology, 2012, 36(7): 117-125 (in Chinese). [5] ARIAS M B, KIM M, BAE S. Prediction of electric vehicle charging-power demand in realistic urban traffic networks [J]. Applied Energy, 2017, 195: 738-753. [6] SHEPERO M, MUNKHAMMAR J. Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data [J]. Applied Energy, 2018, 231: 1089-1099. [7] ZHANG Q, YANG J W, XIANG Y P, et al. Regional electric vehicle charging load modeling method considering meteorological factors [J]. Power System Protection and Control, 2022, 50(6): 14-22 (in Chinese). [8] XIONG X, LIN G, HAO S, et al. Electric vehicle charging load forecasting considering temperature and traffic impact [J]. Electric Engineering, 2021(14): 73-76 (in Chinese). [9] YI T, ZHANG C, LIN T Y, et al. Research on the spatial-temporal distribution of electric vehicle charging load demand: A case study in China [J]. Journal of Cleaner Production, 2020, 242: 118457. [10] LIU K, WANG J B, YAMAMOTO T, et al. Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption [J]. Applied Energy, 2018, 227: 324-331. [11] KURUKURU V S B, ALI KHAN M, SINGH R. Electric vehicle charging/discharging models for estimation of load profile in grid environments [J]. Electric Power Components and Systems, 2023, 51(3): 279-295. [12] CHENG S, ZHAO Z, CHEN N, et al. Prediction of temporal and spatial distribution of electric vehicle charging load considering coupling factors [J]. Electric Power Engineering Technology, 2022, 41(3): 194-201 (in Chinese). [13] QI C, ZHANG Z, LÜ G, et al. Spatial-temporal modeling of EV load considering user behavior decision [J/OL]. Southern Power System Technology, 2023. https://kns.cnki.net/kcms/detail//44.1643.TK.20230202.1703.006.html (in Chinese).
[14] DU X, LONG B, GUO Y, et al. Prediction of electric vehicles charging load based on user travel habits [J]. Intelligent Computers and Applications, 2022, 12(11): 54-63 (in Chinese). [15] CHEN Y, JIANG Y, XU G, et al. Charging load forecasting for large-scale electric vehicle [J]. Power Demand Side Management, 2022, 24(5):71-77 (in Chinese). [16] KE S, CHEN L, YANG J, et al. Electric vehicles travel guidance strategy based on semi-dynamic traffic flow state model [J]. Power System Technology, 2023, 47(8): 3362-3375 (in Chinese). [17] SHAO Y C, MU Y F, YU X D, et al. A spatial-temporal charging load forecast and impact analysis method for distribution network using EVs-traffic-distribution model [J]. Proceedings of the CSEE, 2017, 37(18): 5207-5219, 5519 (in Chinese). [18] YANG X R, LV L, XIANG Y, et al. Degradation charging scenarios and impacts on voltage stability of urban distribution network under “EV-road-grid” coupling [J]. Electric Power Automation Equipment, 2019, 39(10): 102-108, 122 (in Chinese). [19] ZHANG C, PENG K, XIAO C. EV charging guiding strategy based on coordination of “EVs-road-network” [J]. Electric Power Automation Equipment, 2022, 42(10):125-133 (in Chinese). [20] ZHENG Y S, LI F, DONG J L, et al. Optimal dispatch strategy of spatio-temporal flexibility for electric vehicle charging and discharging in vehicle-road-grid mode [J]. Automation of Electric Power Systems, 2022, 46(12): 88-97 (in Chinese). [21] LIU Z, ZHANG Q, ZHU Y, et al. Spatial-temporal distribution prediction of charging loads for electric vehicles considering vehicle-road-station-grid integration[J]. Automation of Electric Power Systems, 2022 46(12): 36-45 (in Chinese). [22] CHEN J, ZHOU Z D, ZHOU Z W, et al. Impact of battery cell imbalance on electric vehicle range [J]. Green Energy and Intelligent Transportation, 2022, 1(3): 100025. [23] SHEN Z, XIAO L, SHEN F, et al. The experimental study on charge and discharge performance of NCM power battery system based on ambient temperature[C]// 2020 China-ASA Conference and Exhibition. Shanghai: China SAE, 2020: 548-555 (in Chinese). [24] YU Y, YANG Y. Research on energy behavior testing on office building occupants in summer [J]. Environmental Engineering, 2015, 33(5): 153-156 (in Chinese). [25] ZHU M L, YAN J Y, LIU X S. Analysis of road traffic congestion in Beijing and research on its mitigation countermeasures[J]. Journal of Municipal Technology, 2020, 38(3): 28-32 (in Chinese). |
| [1] | 刘永江, 郭杉, 贾俊青, 刘小恺, 蔡文超, 曾龙. 多种充电模式协同的规模化电动汽车分层充电方法[J]. 上海交通大学学报, 2025, 59(9): 1304-1314. |
| [2] | 胡龙, 方八零, 樊飞龙, 陈达伟, 李新喜, 曾润. 用户-基站-充电站能量互动和储能共享优化方法[J]. 上海交通大学学报, 2025, 59(7): 877-888. |
| [3] | 唐雨杭, 喻锟, 曾祥君, 倪砚茹, 程新翔, 韩炜. 基于地电位分布的地铁杂散电流引起埋地金属腐蚀计算方法[J]. 上海交通大学学报, 2025, 59(3): 424-434. |
| [4] | 孙欣, 江海林, 谢敬东, 王思敏, 王森. 基于用户信用指数的园区电动汽车充放电调度机制[J]. 上海交通大学学报, 2025, 59(2): 200-207. |
| [5] | 刘贤权1, 姜伟2. 深水钻井隔水导管纵向振动特性研究及其应用[J]. 海洋工程装备与技术, 2025, 12(1): 100-105. |
| [6] | 白文超, 班明飞, 宋梦, 夏世威, 李知艺, 宋文龙. 电动汽车-无人机联合救援系统协调调度模型[J]. 上海交通大学学报, 2024, 58(9): 1443-1453. |
| [7] | 孙欣, 王思敏, 谢敬东, 江海林, 王森. 考虑多维影响因素的改进Transformer-PSO短期电价预测方法[J]. 上海交通大学学报, 2024, 58(9): 1420-1431. |
| [8] | 罗敏, 杨劲锋, 俞蕙, 赖雨辰, 郭杨运, 周尚礼, 向睿, 童星, 陈潇. 基于树结构Parzen估计器优化集成学习的短期负荷预测方法[J]. 上海交通大学学报, 2024, 58(6): 819-825. |
| [9] | 邱革非, 冯泽华, 沈赋, 何超, 何虹辉, 刘铠铭. 考虑车网互动的园区电网动态双层能量管理策略[J]. 上海交通大学学报, 2024, 58(6): 916-925. |
| [10] | 孙毅, 葛明洋, 王献春, 鲍荟谕, 杨泓玥, 姚陶. 考虑补偿激励的电动汽车多区域优化调度策略[J]. 上海交通大学学报, 2024, 58(5): 636-646. |
| [11] | 张程, 匡宇, 陈文兴, 郑杨. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5): 669-681. |
| [12] | 肖银璟, 张迪, 魏娟, 葛睿, 陈达伟, 杨桂兴, 叶志亮. 考虑减排对能源需求潜在影响的沿海城市碳减排路径动态优化[J]. 上海交通大学学报, 2024, 58(5): 600-609. |
| [13] | 聂世豪, 陈磊, 郝玲, 徐飞, 闵勇, 窦真兰, 张春雁, 孙沛. 基于非侵入式负荷分解的空调集群AGC调频备用容量评估方法[J]. 上海交通大学学报, 2024, 58(12): 1892-1902. |
| [14] | 王精, 邢海军, 王华昕, 彭思佳. 考虑电动汽车及负荷聚合商参与的综合能源系统优化调度[J]. 上海交通大学学报, 2023, 57(7): 814-823. |
| [15] | 万安平, 杨洁, 缪徐, 陈挺, 左强, 李客. 基于注意力机制与神经网络的热电联产锅炉负荷预测[J]. 上海交通大学学报, 2023, 57(3): 316-325. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||