上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (3): 424-434.doi: 10.16183/j.cnki.jsjtu.2023.334

• 新型电力系统与综合能源 • 上一篇    

基于地电位分布的地铁杂散电流引起埋地金属腐蚀计算方法

唐雨杭1, 喻锟1(), 曾祥君1, 倪砚茹1, 程新翔1, 韩炜2   

  1. 1.长沙理工大学 智能电网运行与控制湖南省重点实验室,长沙 410004
    2.国网山西省太原供电公司,太原 030002
  • 收稿日期:2023-07-22 修回日期:2023-11-21 接受日期:2023-12-11 出版日期:2025-03-28 发布日期:2025-04-02
  • 通讯作者: 喻 锟,副教授;E-mail:kunyu0707@163.com.
  • 作者简介:唐雨杭(2000—),硕士生,从事地铁杂散电流及地电位分布研究.
  • 基金资助:
    国家电网总部科技项目(5100-202199276A-0-0-00)

Calculation Method for Underground Metal Corrosion Due to Stray Current Based on Ground Potential Distribution

TANG Yuhang1, YU Kun1(), ZENG Xiangjun1, NI Yanru1, CHENG Xinxiang1, HAN Wei2   

  1. 1. Hunan Province Key Laboratory of Smart Grids Operation and Control, Changsha University of Technology, Changsha 410004, China
    2. State Grid Shanxi Taiyuan Power Supply Company, Taiyuan 030002, China
  • Received:2023-07-22 Revised:2023-11-21 Accepted:2023-12-11 Online:2025-03-28 Published:2025-04-02

摘要:

绿色城市轨道交通建设是助力“双碳”目标、加快构建新型电力系统的重要环节,但地铁运行时产生的杂散电流会导致土壤极化,造成埋地金属腐蚀.为分析地铁运行时杂散电流对埋地金属管道的腐蚀干扰情况,提出一种基于大地电位分布的埋地管道腐蚀电流密度计算方法.首先,从实际地铁牵引供电回流系统出发,建立长线路、多机车四层地网回流模型,实现杂散电流和钢轨电位的实时动态分布计算;进一步将钢轨电位分布等效为线电压源,并导入地铁线路模型中实现地电位分布仿真计算.然后,建立包含防腐层的土壤-管道回路模型,实现管道腐蚀电流密度的动态计算.最后,分析钢轨直流电阻、过渡电阻、土壤电阻率对管道腐蚀电流密度的影响程度.仿真结果表明:管道腐蚀电流密度变化与钢轨直流电阻线性相关;当钢轨-排流网过渡电阻由5 Ω·km增大至 50 Ω·km时,两条埋地管道的腐蚀电流密度分别减小65.94%、67.45%;较大的土壤电阻率对杂散电流的传播有一定抑制作用.

关键词: 城市轨道交通, 杂散电流, 土壤电位分布, 埋地管道腐蚀, 影响因素

Abstract:

Urban rail transit construction plays an important part in supporting the “dual carbon” goals and accelerating the development of new-type power system. However, stray currents generated during subway operations can lead to soil polarization and corrosion of buried metal pipelines. To analyze the impact of stray currents on buried metal pipelines, a method is proposed to calculate the corrosion current density of buried pipelines based on ground potential distribution. First, a long-line four-layer grounding network reflux model with multiple trains is established based on the actual subway traction power supply system, which enables the real-time dynamic calculation of stray current distribution and rail potential. Next, the rail potential distribution is treated as a line voltage source, which is integrated into the subway line model to calculate ground potential distribution. Then, a soil-pipeline circuit model including anti-corrosion coating is established to realize dynamic calculation of pipeline corrosion current density based on ground potential distribution. Finally, the influencing factors of the pipelines corrosion current density are studied, such as rail direct current (DC) resistance, transition resistance, and soil resistivity. The simulation results show that the pipeline corrosion current density is linearly related to rail DC resistance. When the transition resistance between the rail and the drainage network increases from 5 Ω·km to 50 Ω·km, the corrosion current density of the two buried pipelines reduces by 65.94% and 67.45%, respectively. Additionly, a higher soil resistivity has a certain inhibitory effect on stray current propagation, providing a degree of mitigation against corrosion.

Key words: urban rail transit, stray current, soil potential distribution, corrosion of buried pipelines, influencing factors

中图分类号: