上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (9): 1420-1431.doi: 10.16183/j.cnki.jsjtu.2023.065
收稿日期:
2023-02-27
修回日期:
2023-05-04
接受日期:
2023-05-19
出版日期:
2024-09-28
发布日期:
2024-10-11
作者简介:
孙 欣(1980—),博士,副教授,从事电力市场、能源互联网等方面研究; E-mail: sunxin@shiep.edu.cn.
基金资助:
SUN Xin(), WANG Simin, XIE Jingdong, JIANG Hailin, WANG Sen
Received:
2023-02-27
Revised:
2023-05-04
Accepted:
2023-05-19
Online:
2024-09-28
Published:
2024-10-11
摘要:
随着多元化电力市场的建设,电价影响因素日益增加,市场环境变化也更加剧烈.为提高市场短期电价的预测精度,提出一种考虑多种电价影响因素的改进Transformer-粒子群优化(PSO)算法短期电价预测方法.首先,在考虑历史电价、负荷的基础上进一步分析电价形成的相关因素,利用自相关函数分析电价的多周期特性并在此基础上调整输入序列,克服了仅采用历史数据以及经验调整输入序列导致预测精度受限的问题.其次,结合长短期记忆(LSTM)、自注意力机制与多层注意力机制并采用多输入结构建立改进Transformer模型,进一步提升LSTM模型捕获不同时间步信息间的长短期依赖关系的能力,克服LSTM的信息利用瓶颈,适应包括历史电价及多种电价成因的复杂多序列输入.此外,还利用PSO智能算法搜索模型不同学习阶段的最佳学习率克服手动调整学习率的局限性.最后,采用PJM市场电价进行算例分析,结果表明所提短期电价预测模型能应用于电价影响因素多、变化剧烈的市场环境,并有效提升短期电价预测精度.
中图分类号:
孙欣, 王思敏, 谢敬东, 江海林, 王森. 考虑多维影响因素的改进Transformer-PSO短期电价预测方法[J]. 上海交通大学学报, 2024, 58(9): 1420-1431.
SUN Xin, WANG Simin, XIE Jingdong, JIANG Hailin, WANG Sen. Improved Transformer-PSO Short-Term Electricity Price Prediction Method Considering Multidimensional Influencing Factors[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1420-1431.
[1] | 蒋锋, 何佳琪, 曾志刚, 等. 基于分解-优化-集成学习方法的电价预测[J]. 中国科学: 信息科学, 2018, 48(10): 1300-1315. |
JIANG Feng, HE Jiaqi, ZENG Zhigang, et al. Decomposition-optimization-ensemble learning approach for electricity price forecasting[J]. Scientia Sinica (Informationis), 2018, 48(10): 1300-1315. | |
[2] | HUANG L, YANG Y B, ZHAO H L, et al. Time series modeling and filtering method of electric power load stochastic noise[J]. Protection & Control of Modern Power Systems, 2017, 2(1): 25. |
[3] | CIFTER A. Forecasting electricity price volatility with the Markov-switching GARCH model: Evidence from the Nordic electric power market[J]. Electric Power Systems Research, 2013, 102: 61-67. |
[4] | 谭忠富, 张金良. 利用多因素小波变换和多变量时间序列模型的日前电价预测[J]. 中国电机工程学报, 2010, 30(1): 103-110. |
TAN Zhongfu, ZHANG Jinliang. Day-ahead electricity price forecasting based on multi-factor wavelet analysis and multivariate time series models[J]. Proceedings of the CSEE, 2010, 30(1): 103-110. | |
[5] | 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. |
JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks: Retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716. | |
[6] | PENG L, LIU S, LIU R, et al. Effective long short-term memory with differential evolution algorithm for electricity price prediction[J]. Energy, 2018, 162: 1301-1314. |
[7] | 姚子麟, 张亮, 邹斌, 等. 含高比例风电的电力市场电价预测[J]. 电力系统自动化, 2020, 44(12): 49-55. |
YAO Zilin, ZHANG Liang, ZOU Bin, et al. Electricity price prediction for electricity market with high proportion of wind power[J]. Automation of Electric Power Systems, 2020, 44(12): 49-55. | |
[8] | WANG D Y, LUO H Y, GRUNDER O, et al. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm[J]. Applied Energy, 2017, 190: 390-407. |
[9] | 赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41(1): 135-146. |
ZHAO Yaxue, WANG Xu, JIANG Chuanwen, et al. A novel short-term electricity price forecasting method based on correlation analysis with the maximal information coefficient and modified multi-hierachy gated LSTM[J]. Proceedings of the CSEE, 2021, 41(1): 135-146. | |
[10] | YU L A, MA Y M, MA M Y. An effective rolling decomposition-ensemble model for gasoline consumption forecasting[J]. Energy, 2021, 222: 119869. |
[11] | 韩升科, 胡飞虎, 陈之腾, 等. 基于GCN-LSTM的日前市场边际电价预测[J]. 中国电机工程学报, 2022, 42(9): 3276-3286. |
HAN Shengke, HU Feihu, CHEN Zhiteng, et al. Day ahead market marginal price forecasting based on GCN-LSTM[J]. Proceedings of the CSEE, 2022, 42(9): 3276-3286. | |
[12] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017: 6000-6010. |
[13] | LIM B, ARıK S Ö, LOEFF N, et al. Temporal fusion Transformers for interpretable multi-horizon time series forecasting[J]. International Journal of Forecasting, 2021, 37(4): 1748-1764. |
[14] | 殷豪, 丁伟锋, 陈顺, 等. 基于长短时记忆网络-纵横交叉算法的含高比例新能源电力市场日前电价预测[J]. 电网技术, 2022, 46(2): 472-480. |
YIN Hao, DING Weifeng, CHEN Shun, et al. Day-ahead electricity price forecasting of electricity market with high proportion of new energy based on LSTM-CSO model[J]. Power System Technology, 2022, 46(2): 472-480. | |
[15] | 张淑清, 李君, 姜安琦, 等. 基于FPA-VMD和Bi-LSTM神经网络的新型两阶段短期电力负荷预测[J]. 电网技术, 2022, 46(8): 3269-3279. |
ZHANG Shuqing, LI Jun, JIANG Anqi, et al. A novel two-stage model based on FPA-VMD and Bi-LSTM neural network for short-term power load forecasting[J]. Power System Technology, 2022, 46(8): 3269-3279. | |
[16] | 梁智, 孙国强, 李虎成, 等. 基于VMD与PSO优化深度信念网络的短期负荷预测[J]. 电网技术, 2018, 42(2): 598-606. |
LIANG Zhi, SUN Guoqiang, LI Hucheng, et al. Short-term load forecasting based on VMD and PSO optimized deep belief network[J]. Power System Technology, 2018, 42(2): 598-606. | |
[17] | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, Massachusetts: The MIT Press, 2016. |
[18] | MAKRIDAKIS S, SPILIOTIS E, ASSIMAKOPOULOS V. The M4 Competition: 100, 000 time series and 61 forecasting methods[J]. International Journal of Forecasting, 2020, 36(1): 54-74. |
[19] | 丁文娇, 王帮灿, 陈清贵. 基于纳什均衡的PJM日前市场虚拟交易机制探析[C]//中国电机工程学会电力市场专业委员会2019年学术年会暨全国电力交易机构联盟论坛. 成都: 中国电机工程学会电力市场专业委员会, 2019: 329-335. |
DING Wenjiao, WANG Bangcan, CHEN Qinggui. Research of virtual trading mechanism of PJM day-ahead market based on Nash equilibrium[C]//Proceedings of the 2019 Academic Annual Meeting of the Power Market Professional Committee of the CSEE and the National Alliance of Power Trading Institutions Forum. Chengdu, China: Power Market Professional Committee of the CSEE, 2019: 329-335. | |
[20] | 王永茹. 基于TGARCH模型的电价波动性分析[D]. 山东: 山东大学, 2020. |
WANG Yongru. Analysis of electricity price volatility based on TGARCH model[D]. Shandong: Shandong University, 2020. | |
[21] | 彭春华, 刘刚, 相龙阳. 基于Relief相关性特征提取和微分进化支持向量机的短期电价预测[J]. 电工技术学报, 2013, 28(1): 277-284. |
PENG Chunhua, LIU Gang, XIANG Longyang. Short-term electricity price forecasting using relief-correlation analysis based on feature selection and differential evolution support vector machine[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 277-284. | |
[22] | CHOLLET F. Deep learning with Python[M]. Greenwich: Manning Publications, 2017: 67. |
[23] | 谢谦, 董立红, 厍向阳. 基于Attention-GRU的短期电价预测[J]. 电力系统保护与控制, 2020, 48(23): 154-160. |
XIE Qian, DONG Lihong, SHE Xiangyang. Short-term electricity price forecasting based on Attention-GRU[J]. Power System Protection & Control, 2020, 48(23): 154-160. | |
[24] | 金海东, 刘全, 陈冬火. 一种带自适应学习率的综合随机梯度下降Q-学习方法[J]. 计算机学报, 2019, 42(10): 2203-2215. |
JIN Haidong, LIU Quan, CHEN Donghuo. Adaptive learning-rate on integrated stochastic gradient decreasing Q-learning[J]. Chinese Journal of Computers, 2019, 42(10): 2203-2215. | |
[25] | HARVEY D, LEYBOURNE S, NEWBOLD P. Testing the equality of prediction mean squared errors[J]. International Journal of Forecasting, 1997, 13(2): 281-291. |
[1] | 贾鲁生, 韦家耀, 艾尚茂. 缓波型钢悬链立管静态构型多目标粒子群优化分析[J]. 海洋工程装备与技术, 2023, 10(3): 132-137. |
[2] | 蔡晖, 高伯阳, 祁万春, 吴熙, 谢珍建, 黄俊辉. “双碳”背景下线间潮流控制器多目标协调控制策略[J]. 上海交通大学学报, 2021, 55(12): 1608-1618. |
[3] | 丘文桢, 宋兴宇, 张新曙. 基于代理模型的三立柱半潜平台多目标优化[J]. 上海交通大学学报, 2021, 55(1): 11-20. |
[4] | 黄健,严胜刚. 未知声速下长基线系统定位修正算法[J]. 上海交通大学学报(自然版), 2019, 53(3): 366-372. |
[5] | 王庆, 刘钊, 黄平华, 朱平. 白车身激光焊接过程的变形预测及几何补偿方法[J]. 上海交通大学学报, 2019, 53(1): 62-68. |
[6] | 江春冬1,2,王景玉1,杜太行1,2,郝静1,3,龙超1. 基于变分模态分解算法的单通道无线电混合信号分离[J]. 上海交通大学学报(自然版), 2018, 52(12): 1618-1626. |
[7] | 陈小玲,茅旭初. 基于粒子群算法和平方根平淡卡尔曼滤波的北斗导航系统定位估计算法[J]. 上海交通大学学报(自然版), 2017, 51(5): 592-. |
[8] | 刘园1,张在房1,姚迪2,褚学宁3. 基于多目标离散粒子群的产品服务系统方案配置规则提取[J]. 上海交通大学学报(自然版), 2015, 49(08): 1123-1130. |
[9] | 姜恩宇1,2,昝鹏1,朱晓锦1,邵勇1. 基于粒子群优化的支持向量机用于直肠感知功能重建[J]. 上海交通大学学报(自然版), 2014, 48(02): 168-172. |
[10] | 董方, 谢磊, 张建明. 基于反馈学习粒子群算法的极值搜索控制[J]. 上海交通大学学报(自然版), 2012, 46(12): 1962-1966. |
[11] | 周宣赤1, 白春华1, 王仲琦1, 林大超2. 粒子群投影寻踪算法在岩爆预测中的应用[J]. 上海交通大学学报(自然版), 2012, 46(12): 1956-1961. |
[12] | 王超1, 2, 熊鹰2, 何苗1, 黄胜1. 粒子群算法在大侧斜螺旋桨侧斜分布优化中的应用[J]. 上海交通大学学报(自然版), 2012, 46(03): 398-403. |
[13] | 侯远杭, 胡玉龙, 王文全, 郭春雨, 王超. 船型方案优选的多目标群决策方法[J]. 上海交通大学学报(自然版), 2012, 46(03): 385-389. |
[14] | 张广明, 袁宇浩, 龚松建. 基于改进最小二乘支持向量机方法的短期风速预测[J]. 上海交通大学学报(自然版), 2011, 45(08): 1125-1129. |
[15] | 吴一全, 张晓杰, 吴诗婳. 基于混沌弹性粒子群优化与基于分解的二维交叉熵阈值分割[J]. 上海交通大学学报(自然版), 2011, 45(03): 301-0307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||