上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (5): 600-609.doi: 10.16183/j.cnki.jsjtu.2022.437
肖银璟1, 张迪2, 魏娟2(), 葛睿3, 陈达伟1, 杨桂兴4, 叶志亮1
收稿日期:
2022-11-01
修回日期:
2023-01-03
接受日期:
2023-01-04
出版日期:
2024-05-28
发布日期:
2024-06-17
通讯作者:
魏 娟,助理研究员;E-mail:作者简介:
肖银璟(1998-),硕士生,从事电力系统规划研究.
基金资助:
XIAO Yinjing1, ZHANG Di2, WEI Juan2(), GE Rui3, CHEN Dawei1, YANG Guixing4, YE Zhiliang1
Received:
2022-11-01
Revised:
2023-01-03
Accepted:
2023-01-04
Online:
2024-05-28
Published:
2024-06-17
摘要:
制定合理的沿海城市碳减排规划是实现全球碳目标的关键环节.碳减排将改变城市气候并影响能源需求,这两者都会影响碳减排路径的优化结果.现有扩容规划模型考虑了直接减排贡献并能解决大部分能源系统长期碳减排路径规划问题,但新型电力系统的建设也会通过改变热岛强度等微气候因素间接影响碳排放.考虑碳排放和热排放变化对空调等负荷需求的潜在影响机理,结合扩容规划与碳排放峰值预测,给出沿海城市碳减排路径动态优化方法.以上海浦东地区作为算例,证实所提方法能有效降低碳减排估计成本,并根据仿真结果对沿海城市碳减排提出建议.
中图分类号:
肖银璟, 张迪, 魏娟, 葛睿, 陈达伟, 杨桂兴, 叶志亮. 考虑减排对能源需求潜在影响的沿海城市碳减排路径动态优化[J]. 上海交通大学学报, 2024, 58(5): 600-609.
XIAO Yinjing, ZHANG Di, WEI Juan, GE Rui, CHEN Dawei, YANG Guixing, YE Zhiliang. Dynamic Optimization of Carbon Reduction Pathways in Coastal Metropolises Considering Hidden Influence of Decarbonization on Energy Demand[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 600-609.
[1] | CIARLI T, SAVONA M. Modelling the evolution of economic structure and climate change: A review[J]. Ecological Economics, 2019, 158: 51-64. |
[2] |
LIN B Q, JIA Z J. Impacts of carbon price level in carbon emission trading market[J]. Applied Energy, 2019, 239: 157-170.
doi: 10.1016/j.apenergy.2019.01.194 |
[3] | WANG M, YU H, YANG Y K, et al. Unlocking emerging impacts of carbon tax on integrated energy systems through supply and demand co-optimization[J]. Applied Energy, 2021, 302: 117579. |
[4] | SHAHID M, ULLAH K, IMRAN K, et al. LEAP simulated economic evaluation of sustainable scenarios to fulfill the regional electricity demand in Pakistan[J]. Sustainable Energy Technologies & Assessments, 2021, 46: 101292. |
[5] | 胡春璇, 黄杰, 薛禹胜, 等. 能源转型碳减排效益的货币价值化评估[J]. 电力系统自动化, 2020, 44(1): 29-34. |
HU Chunxuan, HUANG Jie, XUE Yusheng, et al. Monetary value evaluation for carbon emission reduction benefit of energy transition[J]. Automation of Electric Power Systems, 2020, 44(1): 29-34. | |
[6] | PAN X F, GUO S C, XU H T, et al. China’s carbon intensity factor decomposition and carbon emission decoupling analysis[J]. Energy, 2022, 239: 122175. |
[7] | The Intergovernmental Panel on Climate Change. Climate change 2022: Mitigation of climate change[R/OL]. (2022-01-31) [2022-10-31]. https://www.ipcc.ch/report/ar6/wg3/. |
[8] | KHANNA N Z, ZHOU N, FRIDLEY D, et al. Quantifying the potential impacts of China’s power-sector policies on coal input and CO2 emissions through 2050: A bottom-up perspective[J]. Utilities Policy, 2016, 41: 128-138. |
[9] | LI N, CHEN W Y, ZHANG Q. Development of China TIMES-30P model and its application to model China’s provincial low carbon transformation[J]. Energy Economics, 2020, 92: 104955. |
[10] | FRICKO O, HAVLIK P, ROGELJ J, et al. The marker qualification of the shared socieeconomic pathway 2: A middle-of-the-road scenario for the 21st century[J]. Global Environmental Change, 2017, 42: 251-267. |
[11] | BARRON-GAFFORD G A, MINOR R L, ALLEN N A, et al. The photovoltaic heat island effect: Larger solar power plants increase local temperatures[J]. Scientific Reports, 2016, 6: 35070. |
[12] |
LI C B, CAO Y J, ZHANG M, et al. Hidden benefits of electric vehicles for addressing climate change[J]. Scientific Reports, 2015, 5: 9213.
doi: 10.1038/srep09213 pmid: 25790439 |
[13] | LI C B, YANG H Y, SHAHIDEHPOUR M, et al. Optimal planning of islanded integrated energy system with solar-biogas energy supply[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2437-2448. |
[14] | MA Z Y, ZHANG S N, HOU F X, et al. Exploring the driving factors and their mitigation potential in global energy-related CO2 emission[J]. Global Energy Interconnection, 2020, 3(5): 413-422. |
[15] | YANG H Y, LI C B, SHAHIDEHPOUR M, et al. Multistage expansion planning of integrated biogas and electric power delivery system considering the regional availability of biomass[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 920-930. |
[16] | SONG Q J, LIU T L, QI Y. Policy innovation in low carbon pilot cities: Lessons learned from China[J]. Urban Climate, 2021, 39: 100936. |
[17] | WANG S J, WANG J Y, LI S J, et al. Socioeconomic driving forces and scenario simulation of CO2 emissions for a fast-developing region in China[J]. Journal of Cleaner Production, 2019, 216: 217-229. |
[18] | THATCHER M J. Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia[J]. Energy, 2007, 32(9): 1647-1659. |
[19] | CHRENG K, LEE H S, TUY S. Electricity demand prediction for sustainable development in Cambodia using recurrent neural networks with ERA5 reanalysis climate variables[J]. Energy Reports, 2022, 8: 76-81. |
[20] | HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. |
[21] | LI H, WU Z X, YUAN X, et al. The research on modeling and application of dynamic grey forecasting model based on energy price-energy consumption-economic growth[J]. Energy, 2022, 257: 124801. |
[22] | DENG J L. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5): 288-294. |
[23] | IPCC. Global warming of 1.5 ℃[R/OL]. (2018-10-16) [2022-10-31]. https://www.ipcc.ch/sr15/. |
[24] | HUPPMANN D, GIDDEN M, FRICKO O, et al. The MESSAGEix integrated assessment model and the ix modeling platform (ixmp): An open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development[J]. Environmental Modelling & Software, 2019, 112: 143-156. |
[25] | 上海市浦东新区统计局. 上海浦东新区统计年鉴(2010—2021)[DB/OL]. (2022-06-16) [2022-10-31]. https://www.pudong.gov.cn/014004002002/index.html. |
Shanghai Pudong New Area Municipal Bureau of Statistics. Statistical yearbook of Shanghai Pudong new area (2010—2021)[DB/OL]. (2022-06-16) [2022-10-31]. https://www.pudong.gov.cn/014004002002/index.html. | |
[26] | CHEN J D, GAO M, CHENG S L, et al. County-level CO2 emissions and sequestration in China during 1997—2017[J]. Scientific Data, 2020, 7(1): 391. |
[27] | International Renewable Energy Agency. Renewable power generation costs in 2020[R/OL]. (2021-06-30) [2022-10-31]. https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020. |
[28] | MACDONALD A E, CLACK C T M, ALEXANDER A, et al. Future cost-competitive electricity systems and their impact on US CO2 emissions[J]. Nature Climate Change, 2016, 6(5): 526-531. |
[29] | ARCILA A, BAKER J D. Evaluating carbon tax policy: A methodological reassessment of a natural experiment[J]. Energy Economics, 2022, 111: 106053. |
[1] | 罗敏, 杨劲锋, 俞蕙, 赖雨辰, 郭杨运, 周尚礼, 向睿, 童星, 陈潇. 基于树结构Parzen估计器优化集成学习的短期负荷预测方法[J]. 上海交通大学学报, 2024, 58(6): 819-825. |
[2] | 胡壮丽, 罗毅初, 蔡航. 城市电力行业碳排放测算方法及减碳路径[J]. 上海交通大学学报, 2024, 58(1): 82-90. |
[3] | 朱月尧, 祁佟, 吴星辰, 刘迪, 华昊辰. 计及实时碳减排的产消群价格型需求响应机制[J]. 上海交通大学学报, 2023, 57(4): 452-463. |
[4] | 万安平, 杨洁, 缪徐, 陈挺, 左强, 李客. 基于注意力机制与神经网络的热电联产锅炉负荷预测[J]. 上海交通大学学报, 2023, 57(3): 316-325. |
[5] | . 基于充电态势感知的充电站负荷预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 28-38. |
[6] | 曾博, 穆宏伟, 董厚琦, 曾鸣. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292. |
[7] | 谭嘉, 李知艺, 杨欢, 赵荣祥, 鞠平. 基于分布式优化思想的配电网用电负荷多层协同预测方法[J]. 上海交通大学学报, 2021, 55(12): 1544-1553. |
[8] | 钟光耀, 邰能灵, 黄文焘, 李然, 傅晓飞, 纪坤华. 基于多维聚类的配变负荷注意力短期预测方法[J]. 上海交通大学学报, 2021, 55(12): 1532-1543. |
[9] | 张艳岗,毛虎平,苏铁熊,董小瑞,王英,王军. 基于能量原理的等效静态载荷法及其在活塞动态优化中的应用[J]. 上海交通大学学报(自然版), 2015, 49(09): 1293-1299. |
[10] | 曹卫华1,2,蔡伊青2,袁艳1,2,吴敏1,2. 烧结余热回收系统效率计算及参数动态优化[J]. 上海交通大学学报(自然版), 2014, 48(07): 1046-1052. |
[11] | 王志强, 邵之江, 万娇娜, 方学毅. 基于径向基函数的动态优化问题联立求解方法[J]. 上海交通大学学报(自然版), 2011, 45(08): 1221-1225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||