上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (5): 585-599.doi: 10.16183/j.cnki.jsjtu.2022.360
• 新型电力系统与综合能源 • 下一篇
宋梦1(), 林固静1, 蒙璟1, 高赐威1, 陈涛1, 夏世威2, 班明飞3
收稿日期:
2022-09-13
修回日期:
2022-11-09
接受日期:
2022-12-13
出版日期:
2024-05-28
发布日期:
2024-06-17
作者简介:
宋 梦(1989-),副教授,博士生导师,从事需求响应、虚拟电厂、配电网韧性、共享储能等研究;E-mail:songmengseu@163.com.
基金资助:
SONG Meng1(), LIN Gujing1, MENG Jing1, GAO Ciwei1, CHEN Tao1, XIA Shiwei2, BAN Mingfei3
Received:
2022-09-13
Revised:
2022-11-09
Accepted:
2022-12-13
Online:
2024-05-28
Published:
2024-06-17
摘要:
在“双碳”目标推动下,可再生能源渗透率不断提高,但其固有的波动性、间歇性和不确定性给电力系统安全稳定运行带来了极大挑战.共享储能作为共享经济在储能领域的典型应用,通过储能资源的“所有权”和“使用权”分离,实现储能资源的最大化使用,为可再生能源大规模并网引发的供需失衡问题提供了新的解决方案,展现出广阔的发展前景.从价值定位、成本模型、及盈利模式3个维度总结了共享储能的商业模式,并对其交易品种、运行架构、工程应用进行详细分析和总结,最终对共享储能的未来趋势进行讨论与前瞻.
中图分类号:
宋梦, 林固静, 蒙璟, 高赐威, 陈涛, 夏世威, 班明飞. 共享储能关键技术与应用[J]. 上海交通大学学报, 2024, 58(5): 585-599.
SONG Meng, LIN Gujing, MENG Jing, GAO Ciwei, CHEN Tao, XIA Shiwei, BAN Mingfei. Key Technologies and Applications of Shared Energy Storage[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 585-599.
表1
共享储能定价机制总结与对比
类型 | 交易品种 | 应用场景 | 优点 | 缺点 | 参考文献 | |
---|---|---|---|---|---|---|
固定电价 | 单位功率/容量、流量、定制套餐 | 适用于对价格敏感度不大但用户需求和偏好明显的场景 | 价格固定,与时间、供需关系等无关,消除了用户间的竞争 | 价格制定困难,定价过高会降低用户购买积极性、过低会延迟储能投资回收 | [ | |
分时电价 | 功率 | 适用于明显价格套利和增加光伏渗透率的场景 | 有利于刺激和鼓励用户购买共享储能服务进行移峰填谷和价格套利,优化用电方式 | 应用场景有限 | [ | |
拍卖机制 | 功率、容量 | 适用于买/卖参与方数量多、投标偏好复杂的场景 | 价格能够很好反映供需关系和用户偏好,并使社会福利最大化 | 参与方过多、组合机制复杂的情况下会使求解非常困难 | [ | |
主从博弈 | 功率、容量 | 适用于共享储能运营商、多用户处于竞争环境中且存在相互冲突的利益诉求的场景 | 可以权衡多方利益诉求,重视个体理性 | 可能导致博弈均衡偏离社会福利最优点 | [ | |
合作 博弈 | 夏普 利值 | 功率(主要针对成本、效益进行分配) | 适用于多主体共同投资共享储能的场景,例如社区储能、具有合作关系的云储能等 | 按边际贡献分配,体现公平性 | 计算复杂度大,可能导致联盟不稳定 | [ |
核仁 | 按平均主义下的联盟剩余进行分配,体现稳定性 | 计算复杂度随联盟成员数量的增加而递增 | [ | |||
纳什 谈判 | 通过谈判达成共识,体现效率性 | 谈判破裂场景数据获取困难 | [ |
表4
私有储能共享结构与公共储能共享结构的对比
结构 | 模式 | 实体拥有者 | 交易品种 | 第三方运营商 | 优缺点 | 应用场景 |
---|---|---|---|---|---|---|
私有储能共享结构 | 电力共享模式 | 独立用户 | 能量 | 无 | 利用储能空闲能量进行交易,实现隐私保护;但仅限能量交易,储能设备利用率提高有限,且要求每个用户都配备储能设施 | 适用于用户数量较少且用户均配置了储能的能源交易场景 |
资源再分配模式(特斯拉) | 独立用户 | 容量使用权(包括初始能量) | 虚拟聚合器 | 用户可自行调整可供共享的功率及容量,从而提高储能设备利用率;但仍要求每个用户都配备储能设施,且效益分配具有一定难度 | 适用于用户数量较多且用户均配置了储能的容量共享场景 | |
公共储能共享结构 | 社区储能模式 | 所有用户集资投建并共享 | 功率使用权+ 容量使用权 | 均可 | 用户无需自行配备储能设施,但需出资投建公共储能设备,成本、效益分配具有一定难度 | 适用于邻近范围内的社区、楼宇 |
云储能模式 | 共享储能运营商集资投建 | 功率使用权+ 容量使用权 | 有 | 用户无需自行配备或投资建设储能设施,可按需购买储能服务;共享储能运营商可利用规模经济、需求互补性等盈利,但在储能规模的配置上难度较大 | 不仅适用于邻近范围内的社区、楼宇,也适用于广域范围上的用户、微网、配网系统运营商 |
表5
共享储能工程示范项目
项目名称 | 国家 | 公司 | 时间 | 规模 | 类型 | 特色 |
---|---|---|---|---|---|---|
EconamicGrid[ | 德国 | SENEC.IES | 2009年 | 超过6000个储能系统 | 负荷侧分布式光伏+储能 | 帮助2000个参与项目的用户获取“免费电力” |
青海共享储能[ | 中国 | 国家电网公司 | 2019年 | 2座储能电站,总容量为82 MW/164 MW·h | 电源侧/电网侧新能源+储能 | 中国首个共享储能调峰辅助服务市场 |
Barásoain’s pilot project[ | 西班牙 | Acciona energia | 2018年 | 1个1 MW/0.39 MW·h的快速反应电池,1个自主性更强的慢速反应电池 | 电源侧风电 厂+储能 | 采用独特的“Store-Chain”技术,使可再生资源在发电高峰期能被完全消纳 |
The Alkimos Beach Trial[ | 澳大利亚 | Synergy | 2016年 | 1.1 MW·h规模的锂离子储能装置 | 社区共享储能 | 澳大利亚第一个大规模社区电池储能 |
Epplas[ | 德国 | Engie | 2015年 | 16户居民,总容量为287 kW的光伏组件和1个容量为330 kW·h的电池储能系统 | 社区共享储能 | 项目用以缓冲该小村庄的尖峰负荷以及各类测试 |
Living Lab Walldorf[ | 德国 | MVV Energie | 2015年 | 40个家庭和企业组成,储能容量为100 kW·h | 社区共享储能 | 整合了发电机组、光伏系统和热电联产机组 |
Smart Community Speyer[ | 德国 | Stadtwerke Speyer,Japanese New Energy,Industrial Technology Development Organization | 2016年 | 16个用户,1个储能系统,1个热泵 | 社区共享储能 | 设置了两组情况相同的建筑作为参照条件,测试共享储能带来的收益 |
Strombank[ | 德国 | MVV Energy | 2015年 | 1栋公寓住户,1个230 kW·h的储能系统 | 社区共享储能 | 用于公寓用户对电能的错峰储存和使用 |
White Gum Valley[ | 澳大利亚 | Power Ledger | 2017年 | 1个strata company(与各家庭签订输电协定),多个用户及其自身光伏储能系统 | 社区共享储能 | 通过strata company来统一规范管理用户储能和光伏系统的使用权 |
Quartierspeicher Weinsberg[ | 德国 | Kaco new energy | 2013年 | 6栋独户住宅、1栋连体公寓、10栋联排住宅、1栋5户连体公寓 | 社区共享储能 | 共享储能系统与当地的供暖网络、联合热电厂和热泵连接在一起 |
ComEd’s Community Energy Storage (CES)[ | 美国 | Commonwealth Edison Company | 2017年 | 25 kW·h的锂离子电池储能系统 | 社区共享储能 | 该项目主要用于紧急情况下提供电力保障 |
Affordable Student Housing[ | 澳大利亚 | Stucco | 2015年 | 1栋多单元住宅,安装有太阳能电池板和电池网络 | 社区共享储能 | 该项目为澳大利亚第一个实现太阳能电池板和电池网络的能源共享型多单元住宅,实现用户80%的电能自给率 |
[1] | SINSEL S R, RIEMKE R L, HOFFMANN V H. Challenges and solution technologies for the integration of variable renewable energy sources—A review[J]. Renewable Energy, 2020, 145: 2271-2285. |
[2] | SONG M, NEJAD R R, SUN W. Robust distribution system load restoration with time-dependent cold load pickup[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3204-3215. |
[3] | SUN Y S, ZHAO Z X, YANG M, et al. Overview of energy storage in renewable energy power fluctuation mitigation[J]. CSEE Journal of Power and Energy Systems, 2019, 6(1): 160-173. |
[4] | NGUYEN H T, MUHS J W, PARVANIA M. Assessing impacts of energy storage on resilience of distribution systems against hurricanes[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(4): 731-740. |
[5] | NAZEMI M, MOEINI-AGHTAIE M, FOTUHI-FIRUZABAD M, et al. Energy storage planning for enhanced resilience of power distribution networks against earthquakes[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 795-806. |
[6] | SONG M, MENG J, LIN G J, et al. Applications of shared economy in smart grids: Shared energy storage and transactive energy[J]. The Electricity Journal, 2022, 35(5): 107128. |
[7] | MARTIN C J. The sharing economy: A pathway to sustainability or a nightmarish form of neoliberal capitalism?[J]. Ecological Economics, 2016, 121: 149-159. |
[8] | SONG M, CAI Y F, GAO C W, et al. Transactive energy in power distribution systems: Paving the path towards cyber-physical-social system[J]. International Journal of Electrical Power & Energy Systems, 2022, 142: 108289. |
[9] | STORME T, CASIER C, AZADI H, et al. Impact assessments of new mobility services: A critical review[J]. Sustainability, 2021, 13(6): 3074. |
[10] |
PHUA V C. Perceiving Airbnb as sharing economy: The issue of trust in using Airbnb[J]. Current Issues in Tourism, 2019, 22(17): 2051-2055.
doi: 10.1080/13683500.2018.1440539 |
[11] | 乔英俊, 纪雪洪. 发展共享汽车推动汽车强国建设[J]. 中国工程科学, 2018, 20(1): 120-126. |
QIAO Yingjun, JI Xuehong. Developing car sharing to promote an automobile power strategy[J]. Engineering Science, 2018, 20(1): 120-126. | |
[12] | KALATHIL D, WU C Y, POOLLA K, et al. The sharing economy for the electricity storage[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 556-567. |
[13] | SCHÖN O. Business model modularity—A way to gain strategic flexibility?[J]. Controlling & Management, 2012, 56(2): 73-78. |
[14] | TUSHAR W, CHAI B, YUEN C, et al. Energy storage sharing in smart grid: A modified auction-based approach[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1462-1475. |
[15] | WANG Z M, GU C H, LI F R. Flexible operation of shared energy storage at households to facilitate PV penetration[J]. Renewable Energy, 2018, 116: 438-446. |
[16] | 刘娟, 邹丹平, 陈毓春, 等. “互联网+”的客户侧分布式储能P2P共享模式运营机制及效益探讨[J]. 电网与清洁能源, 2020, 36(4): 97-105. |
LIU Juan, ZOU Danping, CHEN Yuchun, et al. Discussions on operation mechanism and benefits of customer-side distributed energy storage P2P sharing mode of “Internet +”[J]. Advances of Power System & Hydroelectric Engineering, 2020, 36(4): 97-105. | |
[17] | WANG Z M, GU C H, LI F R, et al. Active demand response using shared energy storage for household energy management[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 1888-1897. |
[18] | 陈玥, 刘锋, 魏韡, 等. 需求侧能量共享:概念、机制与展望[J]. 电力系统自动化, 2021, 45(2): 1-11. |
CHEN Yue, LIU Feng, WEI Wei, et al. Energy sharing at demand side: Concept, mechanism and prospect[J]. Automation of Electric Power Systems, 2021, 45(2): 1-11. | |
[19] | 康重庆, 刘静琨, 张宁. 未来电力系统储能的新形态: 云储能[J]. 电力系统自动化, 2017, 41(21): 2-8. |
KANG Chongqing, LIU Jingkun, ZHANG Ning. A new form of energy storage in future power system: Cloud energy storage[J]. Automation of Electric Power Systems, 2017, 41(21): 2-8. | |
[20] | 薛金花, 叶季蕾, 许庆强, 等. 客户侧分布式储能消纳新能源的互动套餐和多元化商业模式研究[J]. 电网技术, 2020, 44(4): 1310-1316. |
XUE Jinhua, YE Jilei, XU Qingqiang, et al. Interactive package and diversified business mode of renewable energy accommodation with client distributed energy storage[J]. Power System Technology, 2020, 44(4): 1310-1316. | |
[21] | ZHAO D W, WANG H, HUANG J W, et al. Virtual energy storage sharing and capacity allocation[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1112-1123. |
[22] | LIU J K, ZHANG N, KANG C Q, et al. Decision-making models for the participants in cloud energy storage[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 5512-5521. |
[23] | 孙偲, 郑天文, 陈来军, 等. 基于组合双向拍卖的共享储能机制研究[J]. 电网技术, 2020, 44(5): 1732-1739. |
SUN Cai, ZHENG Tianwen, CHEN Laijun, et al. Energy storage sharing mechanism based on combinatorial double auction[J]. Power System Technology, 2020, 44(5): 1732-1739. | |
[24] | BRIJS T, HUPPMANN D, SIDDIQUI S, et al. Auction-based allocation of shared electricity storage resources through physical storage rights[J]. Journal of Energy Storage, 2016, 7: 82-92. |
[25] | ZAIDI B H, BHATTI D M S, ULLAH I. Combinatorial auctions for energy storage sharing amongst the households[J]. Journal of Energy Storage, 2018, 19: 291-301. |
[26] | MEDIWATHTHE C P, SHAW M, HALGAMUGE S, et al. An incentive-compatible energy trading framework for neighborhood area networks with shared energy storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 467-476. |
[27] | 刘继春, 陈雪, 向月. 考虑共享模式的市场机制下售电公司储能优化配置及投资效益分析[J]. 电网技术, 2020, 44(5): 1740-1750. |
LIU Jichun, CHEN Xue, XIANG Yue. Optimal sizing and investment benefit analysis for energy storage of electricity retailers under market mechanisms considering shared mode[J]. Power System Technology, 2020, 44(5): 1740-1750. | |
[28] | 李咸善, 解仕杰, 方子健, 等. 多微电网共享储能的优化配置及其成本分摊[J]. 电力自动化设备, 2021, 41(10): 44-51. |
LI Xianshan, XIE Shijie, FANG Zijian, et al. Optimal configuration of shared energy storage for multi-microgrid and its cost allocation[J]. Electric Power Automation Equipment, 2021, 41(10): 44-51. | |
[29] | YANG Y, HU G Q, SPANOS C J. Optimal sharing and fair cost allocation of community energy storage[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4185-4194. |
[30] |
黄铖, 刘海涛, 马丙泰, 等. 基于纳什谈判的共享储能电站优化运行研究[J]. 电力建设, 2022, 43(2): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.02.001 |
HUANG Cheng, LIU Haitao, MA Bingtai, et al. Research on optimal operation of shared energy-storage power station applying Nash negotiation[J]. Electric Power Construction, 2022, 43(2): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.02.001 |
|
[31] | PANKIRAJ J S, YASSINE A, CHOUDHURY S. An auction mechanism for profit maximization of peer-to-peer energy trading in smart grids[J]. Procedia Computer Science, 2019, 151: 361-368. |
[32] | 马云聪, 武传涛, 林湘宁, 等. 一种基于半分布式结构化拓扑的云储能点对点交易策略研究[J]. 中国电机工程学报, 2022, 42(21): 7731-7746. |
MA Yuncong, WU Chuantao, LIN Xiangning, et al. Research on peer-to-peer transaction strategy of cloud energy storage based on semi-distributed structured topology[J]. Proceedings of the CSEE, 2022, 42(21): 7731-7746. | |
[33] | 李建林. 共享储能为青海新能源供应插上腾飞翅膀[J]. 电气时代, 2020(2): 14-15. |
LI Jianlin. Sharing energy storage inserts soaring wings for Qinghai new energy supply[J]. Electric Age, 2020(2): 14-15. | |
[34] | ZHANG W Y, WEI W, CHEN L J, et al. Service pricing and load dispatch of residential shared energy storage unit[J]. Energy, 2020, 202: 117543. |
[35] | CHAKRABORTY P, BAEYENS E, POOLLA K, et al. Sharing storage in a smart grid: A coalitional game approach[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4379-4390. |
[36] | XIE K, ZHONG W F, LI W J, et al. Distributed capacity allocation of shared energy storage using online convex optimization[J]. Energies, 2019, 12(9): 1642. |
[37] | ZHONG W F, XIE K, LIU Y, et al. Multi-resource allocation of shared energy storage: A distributed combinatorial auction approach[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4105-4115. |
[38] | CARLI R, DOTOLI M, JANTZEN J, et al. Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Sams?[J]. Energy, 2020, 198: 117188. |
[39] | SIOSHANSI R. Welfare impacts of electricity storage and the implications of ownership structure[J]. The Energy Journal, 2010, 31(2): 173-198. |
[40] | XIAO J W, YANG Y B, CUI S C, et al. A new energy storage sharing framework with regard to both storage capacity and power capacity[J]. Applied Energy, 2022, 307: 118171. |
[41] | 王克道, 陈启鑫, 郭鸿业, 等. 面向可交易能源的储能容量合约机制设计与交易策略[J]. 电力系统自动化, 2018, 42(14): 54-60. |
WANG Kedao, CHEN Qixin, GUO Hongye, et al. Mechanism design and trading strategy for capacity contract of energy storage towards transactive energy[J]. Automation of Electric Power Systems, 2018, 42(14): 54-60. | |
[42] | 董凌, 年珩, 范越, 等. 能源互联网背景下共享储能的商业模式探索与实践[J]. 电力建设, 2020, 41(4): 38-44. |
DONG Ling, NIAN Heng, FAN Yue, et al. Exploration and practice of business model of shared energy storage in energy Internet[J]. Electric Power Construction, 2020, 41(4): 38-44.
doi: 10.3969/j.issn.1000-7229.2020.04.005 |
|
[43] | WANG H, HUANG J W. Incentivizing energy trading for interconnected microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2647-2657. |
[44] | NGUYEN S, PENG W, SOKOLOWSKI P, et al. Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading[J]. Applied Energy, 2018, 228: 2567-2580. |
[45] | 夏元兴, 徐青山, 黄煜, 等. 端对端交易场景下配电网分布式储能的优化配置[J]. 电力系统自动化, 2021, 45(14): 82-89. |
XIA Yuanxing, XU Qingshan, HUANG Yu, et al. Optimal configuration of distributed energy storage for distribution network in peer-to-peer transaction scenarios[J]. Automation of Electric Power Systems, 2021, 45(14): 82-89. | |
[46] | TESLA. Earn cash from your Powerwall and create a cleaner, stronger grid[EB/OL]. (2020-01-01) [2022-09-01]. https://www.tesla.com/connectedsolutions. |
[47] | WANG Y P, SAAD W, HAN Z, et al. A game-theoretic approach to energy trading in the smart grid[J]. IEEE Transactions on Smart Grid, 2014, 5(3): 1439-1450. |
[48] | LIU J K, ZHANG N, KANG C Q, et al. Cloud energy storage for residential and small commercial consumers: A business case study[J]. Applied Energy, 2017, 188: 226-236. |
[49] | TERLOUW T, ALSKAIF T, BAUER C, et al. Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies[J]. Applied Energy, 2019, 239: 356-372. |
[50] | ZHOU Y L, CI S, LIN N, et al. Distributed energy management of P2P energy sharing in energy Internet based on cloud energy storage[C]// Proceedings of the Ninth International Conference on Future Energy Systems. New York, USA: ACM, 2018: 173-177. |
[51] | LI S L, ZHU J Z, CHEN Z Y, et al. Double-layer energy management system based on energy sharing cloud for virtual residential microgrid[J]. Applied Energy, 2021, 282: 116089. |
[52] | ALLE. Gratis-Strom Speicherbetreiber dank econamic grid[EB/OL]. (2014-02-19)[2022-09-01]. https://www.haus.co/magazin/gratis-strom-fuer-speicherbetreiber-dank-econamic-grid/. |
[53] | ZENERGY. China’s first domestic market share storage power station operators to start building[EB/OL]. (2020-01-09)[2022-09-01]. https://www.zenergytech.com/news/first-domestic-market-storage-power.html. |
[54] | Michael McGovern. Wind-to-battery aids Acciona integration commitment[EB/OL]. (2018-01-02)[2022-09-01]. https://www.windpowermonthly.com/article/1453181/wind-to-battery-aids-acciona-integration-commitment. |
[55] | SYNERGY. Alkimos Beach energy trial[EB/OL]. (2020-03-12)[2022-09-01]. https://www.synergy.net.au/Our-energy/For-tomorrow/Previous-projects-and-trials/Alkimos-Beach-Energy-Storage-Trial. |
[56] | COLTHORPE A. Pumped hydro and batteries combine at Engie’s new Bavaria project[EB/OL]. (2018-05-31)[2022-09-01]. https://www.energy-storage.news/pumped-hydro-and-batteries-combine-at-engies-new-bavaria-project/. |
[57] | VORLESEN. Projekt: Living Lab Walldorf[EB/OL]. (2021-03-21)[2022-09-01]. https://um.baden-wuerttemberg.de/de/umwelt-natur/nachhaltigkeit/nachhaltige-digitalisierung/projekte/living-lab-walldorf/. |
[58] | ECOS. Smart Community Project Speyer[EB/OL]. (2015-09-17)[2022-09-01]. https://www.ecos.eu/en/services/project-management/smart-community-project-in-speyer.html. |
[59] | CAKE A. Mannheim becomes one of the world’s smartest cities[EB/OL]. (2015-09-22)[2022-09-01]. https://www.theneweconomy.com/business/mannheim-becomes-one-of-the-worlds-smartest-cities. |
[60] | MALANE N. The carbon positive living lab: White Gum Valley[EB/OL]. (2018-06-10)[2022-09-01]. https://www.curtin.edu.au/news/carbon-positive-living-lab-white-gum-valley/. |
[61] | KACO. KACO new energy implements solar energy supply for flagship project[DB/OL]. (2013-01-24)[2022-09-01]. https://www.pv-magazine.com/press-releases/kaco-new-energy-implements-solar-energy-supply-for-flagship-project_10009935/. |
[62] | COMED. ComEd conducting illinois’ first community energy storage pilot[EB/OL]. (2017-03-16)[2022-09-01]. https://www.comed.com/News/Pages/NewsReleases/2017_03_16.aspx. |
[63] | STUCCO. Stucco affordable student housing[EB/OL]. (2015-12-30)[2022-09-01]. http://www.stucco.org.au/solar/. |
[1] | 叶伦, 欧阳旭, 姚建刚, 杨胜杰, 尹骏刚. 考虑多重不确定性因素的可靠性指标计算与备用容量优化[J]. 上海交通大学学报, 2024, 58(1): 30-39. |
[2] | 于淼, 胡敬轩, 张寿志, 魏静静, 孙建群, 吴屹潇. 基于PMU梯度动态偏差的新型电力系统快速稳定性[J]. 上海交通大学学报, 2024, 58(1): 40-49. |
[3] | 郭咏涛, 向月, 刘俊勇. 面向高比例清洁能源消纳的含灵活性资源电力系统规划方案优选[J]. 上海交通大学学报, 2023, 57(9): 1146-1155. |
[4] | 李俊双, 胡炎, 邰能灵. 计及通信负载与供电可靠性的5G基站储能与配电网协同优化调度[J]. 上海交通大学学报, 2023, 57(7): 791-802. |
[5] | 叶志亮, 黎灿兵, 张勇军, 李立浧, 肖银璟, 吴雨杭, 邰能灵. 含高比例气象敏感可再生能源电网日前调度时间颗粒度优化[J]. 上海交通大学学报, 2023, 57(7): 781-790. |
[6] | 顾慧杰, 彭超逸, 孙书豪, 刘明涛, 谢俊, 施雄华, 鲍永. 风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型[J]. 上海交通大学学报, 2023, 57(5): 505-512. |
[7] | 黄远明, 张玉欣, 夏赞阳, 王浩浩, 吴明兴, 王宁, 陈青, 朱涛, 陈新宇. 考虑需求响应资源和储能容量价值的新型电力系统电源规划方法[J]. 上海交通大学学报, 2023, 57(4): 432-441. |
[8] | 唐震, 郝丽花, 冯静. 局部频率测量数据驱动的电力系统功率缺额在线评估方法[J]. 上海交通大学学报, 2023, 57(4): 403-411. |
[9] | 刘迪迪, 杨益菲, 杨玉荟, 邹艳丽, 王小华, 黎新. 随机环境下电动汽车充电实时管理与优化控制算法[J]. 上海交通大学学报, 2023, 57(1): 1-9. |
[10] | 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138. |
[11] | 方晓涛, 严正, 王晗, 徐潇源, 陈玥. 考虑概率电压不平衡度越限风险的共享储能优化运行方法[J]. 上海交通大学学报, 2022, 56(7): 827-839. |
[12] | 张硕, 李薇, 李英姿, 刘强, 曾鸣. 面向新型电力系统的可再生能源绿色电力证书差异化配置模型[J]. 上海交通大学学报, 2022, 56(12): 1561-1571. |
[13] | 吴勇虎, 吕欢欢, 于 汀, 兰志刚. 10MW 海洋温差能电站电力系统方案研究[J]. 海洋工程装备与技术, 2022, 9(1): 46-51. |
[14] | 游广增, 汤翔鹰, 胡炎, 邰能灵, 朱欣春, 李玲芳. 基于典型运行场景聚类的电力系统灵活性评估方法[J]. 上海交通大学学报, 2021, 55(7): 802-813. |
[15] | 李玲芳, 陈占鹏, 胡炎, 邰能灵, 高孟平, 朱涛. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||