上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (1): 82-90.doi: 10.16183/j.cnki.jsjtu.2022.222
收稿日期:
2022-06-13
修回日期:
2022-09-21
接受日期:
2022-12-13
出版日期:
2024-01-28
发布日期:
2024-01-16
作者简介:
胡壮丽(1991-),硕士,工程师,现主要从事节能环保与电力系统分析工作. 电话(Tel.): 0757-82863294;E-mail:基金资助:
HU Zhuangli1(), LUO Yichu1, CAI Hang2
Received:
2022-06-13
Revised:
2022-09-21
Accepted:
2022-12-13
Online:
2024-01-28
Published:
2024-01-16
摘要:
为测算城市电力行业碳排放水平和降低电力行业碳排放,提出一种城市电力行业碳排放测算方法和减碳路径.首先,基于城市本地电源发电和净调入电力数据建立城市电力行业碳排放测算模型;其次,从发电侧、电网侧、负荷侧和储能侧提出城市电力行业减碳措施;然后,建立减碳措施的效果评估模型;最后,以珠三角典型城市F市为例,利用所提碳排放测算模型测算该市电力行业碳排放,并依据减碳措施评估该市2030年碳达峰情景电力行业减碳效果.结果表明:所提模型能准确测算城市电力行业碳排放;通过减碳措施,F市在2030年至少可减少碳排放1.06×107 t.
中图分类号:
胡壮丽, 罗毅初, 蔡航. 城市电力行业碳排放测算方法及减碳路径[J]. 上海交通大学学报, 2024, 58(1): 82-90.
HU Zhuangli, LUO Yichu, CAI Hang. A Method for Carbon Emission Measurement and a Carbon Reduction Path of Urban Power Sector[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 82-90.
表1
珠三角F市2010—2020年能源供应侧和消费侧碳排放[27]
年份 | 能源供应侧 ×10-7/t | 能源消费侧×10-7/t | 测算误差/% | ||||
---|---|---|---|---|---|---|---|
工业领域 | 建筑领域 | 交通领域 | 农业农村领域 | 合计 | |||
2010 | 4.999 | 3.614 | 0.631 | 0.545 | 0.047 | 4.836 | 3.26 |
2011 | 5.246 | 3.745 | 0.734 | 0.534 | 0.056 | 5.070 | 3.36 |
2012 | 5.589 | 3.430 | 0.776 | 0.538 | 0.069 | 4.813 | 13.89 |
2013 | 5.635 | 3.419 | 0.790 | 0.552 | 0.063 | 4.824 | 14.40 |
2014 | 5.371 | 3.218 | 0.753 | 0.579 | 0.061 | 4.610 | 14.16 |
2015 | 5.191 | 3.027 | 0.794 | 0.585 | 0.065 | 4.472 | 13.85 |
2016 | 5.026 | 2.993 | 0.817 | 0.592 | 0.062 | 4.463 | 11.19 |
2017 | 5.338 | 3.187 | 0.940 | 0.622 | 0.142 | 4.890 | 8.40 |
2018 | 5.347 | 3.106 | 0.992 | 0.616 | 0.146 | 4.860 | 9.10 |
2019 | 5.243 | 2.931 | 1.021 | 0.619 | 0.131 | 4.702 | 10.33 |
2020 | 5.062 | 2.808 | 1.021 | 0.561 | 0.125 | 4.515 | 10.81 |
表2
F市2010—2020年能源供应侧碳排放细分数据[27]
年份 | 煤品 | 油品 | 天然气 | 净调入电力 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
碳排放量×10-7/t | 占比/% | 碳排放量×10-7/t | 占比/% | 碳排放量×10-7/t | 占比/% | 碳排放量×10-7/t | 占比/% | |||||
2010 | 2.345 | 46.9 | 0.585 | 11.7 | 0.115 | 2.3 | 1.954 | 39.1 | ||||
2011 | 2.303 | 43.9 | 0.751 | 14.3 | 0.177 | 3.4 | 2.015 | 38.4 | ||||
2012 | 2.861 | 51.2 | 0.717 | 12.8 | 0.201 | 3.6 | 1.810 | 32.4 | ||||
2013 | 2.583 | 45.8 | 0.980 | 17.4 | 0.204 | 3.6 | 1.867 | 33.1 | ||||
2014 | 2.414 | 45.0 | 0.778 | 14.5 | 0.273 | 5.1 | 1.905 | 35.5 | ||||
2015 | 2.120 | 40.8 | 0.801 | 15.4 | 0.248 | 4.8 | 2.022 | 39.0 | ||||
2016 | 1.805 | 35.9 | 0.862 | 17.1 | 0.340 | 6.8 | 2.020 | 40.2 | ||||
2017 | 1.951 | 36.5 | 0.786 | 14.7 | 0.347 | 6.5 | 2.255 | 42.2 | ||||
2018 | 2.103 | 39.3 | 0.517 | 9.7 | 0.456 | 8.5 | 2.271 | 42.5 | ||||
2019 | 2.063 | 39.3 | 0.553 | 10.6 | 0.468 | 8.9 | 2.159 | 41.2 | ||||
2020 | 1.983 | 39.2 | 0.474 | 9.4 | 0.447 | 8.8 | 2.158 | 42.6 |
表3
F市2010—2020年净调入电力碳排放
年份 | 发、用电消费量×10-10/(kW·h) | 净调入电 量碳排放 ×10-7/t | ||
---|---|---|---|---|
全社会 用电量 | 净调入电量 | 本地区 发电量 | ||
2010 | 4.657 | 3.461 | 1.196 | 1.954 |
2011 | 4.879 | 3.433 | 1.446 | 2.015 |
2012 | 5.070 | 3.332 | 1.737 | 1.810 |
2013 | 5.271 | 3.498 | 1.773 | 1.867 |
2014 | 5.641 | 4.063 | 1.578 | 1.905 |
2015 | 5.878 | 4.479 | 1.399 | 2.022 |
2016 | 6.208 | 4.764 | 1.445 | 2.020 |
2017 | 6.738 | 5.164 | 1.575 | 2.255 |
2018 | 6.909 | 5.353 | 1.556 | 2.271 |
2019 | 7.027 | 5.466 | 1.561 | 2.159 |
2020 | 7.103 | 5.568 | 1.535 | 2.158 |
表4
F市2010—2020年本地电源发电量[30]
年份 | 全社会 用电量× 10-10/ (kW·h) | 外区净 调入电量× 10-10/ (kW·h) | 本地区电源发电量× 10-10/(kW·h) | ||
---|---|---|---|---|---|
煤电 | 气电 | 非化石 能源电力 | |||
2010 | 4.657 | 3.461 | 1.196 | 0.000 | 0.000 |
2011 | 4.879 | 3.433 | 1.438 | 0.000 | 0.008 |
2012 | 5.070 | 3.332 | 1.628 | 0.054 | 0.056 |
2013 | 5.271 | 3.498 | 1.630 | 0.053 | 0.090 |
2014 | 5.641 | 4.063 | 1.212 | 0.050 | 0.315 |
2015 | 5.878 | 4.479 | 1.028 | 0.001 | 0.370 |
2016 | 6.208 | 4.764 | 0.945 | 0.046 | 0.453 |
2017 | 6.738 | 5.164 | 1.095 | 0.056 | 0.424 |
2018 | 6.909 | 5.353 | 1.055 | 0.069 | 0.432 |
2019 | 7.027 | 5.466 | 0.994 | 0.147 | 0.420 |
2020 | 7.103 | 5.568 | 1.134 | 0.200 | 0.201 |
[1] | 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509. | |
[2] |
LI C B, CAO Y J, ZHANG M, et al. Hidden benefits of electric vehicles for addressing climate change[J]. Scientific Reports, 2015, 5: 9213.
doi: 10.1038/srep09213 pmid: 25790439 |
[3] | IEA. Enhancing China’s ETS for carbon neutrality: Focus on power sector[DB/OL]. (2022-05-01)[2022-06-05]. https://www.iea.org/reports/enhancing-chinas-ets-for-carbon-neutrality-focus-on-power-sector. |
[4] |
CHENG Y H, ZHANG N, ZHANG B S, et al. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1307-1318.
doi: 10.1109/TSG.5165411 URL |
[5] |
WEI J, CAO Y J, WU Q W, et al. Coordinated droop control and adaptive model predictive control for enhancing HVRT and post-event recovery of large-scale wind farm[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1549-1560.
doi: 10.1109/TSTE.2021.3053955 URL |
[6] | 张胜利, 俞海山. 中国工业碳排放效率及其影响因素的空间计量分析[J]. 科技与经济, 2015, 28(4): 106-110. |
ZHANG Shengli, YU Haishan. Spatial econometric analysis of the efficiency of industrial carbon emissions and its influencing factors[J]. Science & Technology and Economy, 2015, 28(4): 106-110. | |
[7] | 刘菁, 刘伊生, 杨柳, 等. 全产业链视角下中国建筑碳排放测算研究[J]. 城市发展研究, 2017, 24(12): 28-32. |
LIU Jing, LIU Yisheng, YANG Liu, et al. Study on the calculation method of carbon emission from the whole building industry chain in China[J]. Urban Development Studies, 2017, 24(12): 28-32. | |
[8] | 李小冬, 朱辰. 我国建筑碳排放核算及影响因素研究综述[J]. 安全与环境学报, 2020, 20(1): 317-327. |
LI Xiaodong, ZHU Chen. Summary of research on account of carbon emission in building industry and analysis of its influential factors[J]. Journal of Safety & Environment, 2020, 20(1): 317-327. | |
[9] |
LIU J G, LI S J, JI Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China[J]. Energy, 2021, 224: 120178.
doi: 10.1016/j.energy.2021.120178 URL |
[10] | 欧阳斌, 凤振华, 李忠奎, 等. 交通运输能耗与碳排放测算评价方法及应用: 以江苏省为例[J]. 软科学, 2015, 29(1): 139-144. |
OUYANG Bin, FENG Zhenhua, LI Zhongkui, et al. Calculation and evaluation methodology of transport energy consumption and carbon emission—The case of Jiangsu Province[J]. Soft Science, 2015, 29(1): 139-144. | |
[11] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价: 基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410. |
TIAN Chengshi, CHEN Yu. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410.
doi: 10.31497/zrzyxb.20210210 URL |
|
[12] |
CHAU C K, LEUNG T M, NG W Y. A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings[J]. Applied Energy, 2015, 143: 395-413.
doi: 10.1016/j.apenergy.2015.01.023 URL |
[13] |
PEHL M, ARVESEN A, HUMPENÖDER F, et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling[J]. Nature Energy, 2017, 2(12): 939-945.
doi: 10.1038/s41560-017-0032-9 |
[14] |
STENZEL P, SCHREIBER A, MARX J, et al. Renewable energies for Graciosa Island, Azores-Life cycle assessment of electricity generation[J]. Energy Procedia, 2017, 135: 62-74.
doi: 10.1016/j.egypro.2017.09.487 URL |
[15] | 王丽娟, 张剑, 王雪松, 等. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 329-338. |
WANG Lijuan, ZHANG Jian, WANG Xuesong, et al. Pathway of carbon emission peak in China’s electric power industry[J]. Research of Environmental Sciences, 2022, 35(2): 329-338. | |
[16] | 刘红琴, 王高天, 陈品文, 等. 地区电力行业碳排放水平测算及其特点分析[J]. 生态经济, 2018, 34(4): 34-39. |
LIU Hongqin, WANG Gaotian, CHEN Pinwen, et al. The level measure and characteristics analysis of carbon emission in regional power industry[J]. Ecological Economy, 2018, 34(4): 34-39. | |
[17] | 汪中华, 申刘岗. 我国区域电力行业碳排放效率测算及分析[J]. 科技与管理, 2019, 21(3): 1-8. |
WANG Zhonghua, SHEN Liugang. Calculation and analysis of carbon emission efficiency in China’s regional electric power industry[J]. Science-Technology & Management, 2019, 21(3): 1-8. | |
[18] |
KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: A network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2386-2394.
doi: 10.1109/TSG.2015.2388695 URL |
[19] |
LI B W, SONG Y H, HU Z C. Carbon flow tracing method for assessment of demand side carbon emissions obligation[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4): 1100-1107.
doi: 10.1109/TSTE.2013.2268642 URL |
[20] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001. | |
[21] | 陈景东, 赵沛. 碳交易试点政策与电力行业碳减排[J]. 中国电力, 2021, 54(12): 156-161. |
CHEN Jingdong, ZHAO Pei. Carbon emissions trading pilot policy and power industry emissions reductions[J]. Electric Power, 2021, 54(12): 156-161. | |
[22] | 戴攀, 邹家勇, 田杰, 等. 中国电力行业碳减排综合优化[J]. 电力系统自动化, 2013, 37(14): 1-6. |
DAI Pan, ZOU Jiayong, TIAN Jie, et al. Integrated optimization of CO2 emission mitigation in China power sector[J]. Automation of Electric Power Systems, 2013, 37(14): 1-6. | |
[23] | 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(Sup.1): 28-51. |
HUANG Yuhan, DING Tao, LI Yuting, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(Sup.1): 28-51. | |
[24] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
[25] | 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14. |
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China’s power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14. | |
[26] | 佛山统计年鉴委员会. 佛山统计年鉴2020[EB/OL]. (2021-07-20)[2022-06-05]. https://www.yearbookchina.com/navibooklist-n3020013105-1.html. |
Foshan Statistical Yearbook Committee. Foshan statistical yearbook 2020[EB/OL]. (2021-07-20)[2022-06-05]. https://www.yearbookchina.com/navibooklist-n3020013105-1.html. | |
[27] | 佛山市发展和改革局. 佛山市碳达峰研究分析报告(征求意见稿)[R]. 佛山: 佛山市发展和改革局, 2021: 33-35. |
Foshan Development and Reform Bureau. Research and analysis report of carbon peak in Foshan city (Draft for comment)[R]. Foshan: Foshan Development and Reform Bureau, 2021: 33-35. | |
[28] | 储能100人. 电化学储能电站的几个核心技术指标[EB/OL]. (2020-09-11)[2020-09-11]. https://newenergy.in-en.com/html/newenergy-2392677.shtml. |
Energy Storage 100 people. Several core technical indexes of electrochemical energy storage power station[EB/OL]. (2020-09-11)[2020-09-11]. https://newenergy.in-en.com/html/newenergy-2392677.shtml. | |
[29] | 广东省发展和改革委员会. 广东省碳达峰碳排放核算指南(暂行)[R]. 广州: 广东省发展和改革委员会, 2021: 10-11. |
Development and Reform Commission of Guangdong Province. Carbon peak carbon emissions accounting guide for Guangdong Province (Temporary)[R]. Guangzhou: Development and Reform Commission of Guangdong Province, 2021: 10-11. | |
[30] | 佛山供电局. 社会责任实践报告2020[R]. 佛山: 佛山供电局, 2021: 5-12. |
Foshan Power Supply Bureau. Social responsibility practice report 2020[R]. Foshan: Foshan Power Supply Bureau, 2021: 5-12. | |
[31] |
VERBONG G P J, BEEMSTERBOER S, SENGERS F. Smart grids or smart users? Involving users in developing a low carbon electricity economy[J]. Energy Policy, 2013, 52: 117-125.
doi: 10.1016/j.enpol.2012.05.003 URL |
[1] | 陈赟, 沈浩, 王晓慧, 赵文恺, 潘智俊, 王佳裕, 李思源, 韩冬. 基于Mann-Kendall趋势检验的城市能源碳达峰评估方法[J]. 上海交通大学学报, 2023, 57(7): 928-938. |
[2] | 朱月尧, 祁佟, 吴星辰, 刘迪, 华昊辰. 计及实时碳减排的产消群价格型需求响应机制[J]. 上海交通大学学报, 2023, 57(4): 452-463. |
[3] | 陈雨婷, 赵毅, 吴俊达, 孙文瑶, 夏世威. 考虑碳排放指标的配电网经济调度方法[J]. 上海交通大学学报, 2023, 57(4): 442-451. |
[4] | 陈赟, 沈浩, 王佳裕, 赵文恺, 潘智俊, 王晓慧, 肖银璟. 基于“能源大脑”的城市区域碳排放实时计算方法[J]. 上海交通大学学报, 2022, 56(9): 1111-1117. |
[5] | 曾博, 穆宏伟, 董厚琦, 曾鸣. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292. |
[6] | 张鹏飞, 徐静怡, 郭巍, 吴蔚, 钟晨, 魏文栋. 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报, 2022, 56(3): 293-302. |
[7] | 黄强, 郭怿, 江建华, 明波. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
[8] | 陈文溆乐, 向月, 彭光博, 刘友波, 刘俊勇. “双碳”目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||