[1] |
UNFCCC. Kyoto protocol to the United Nations Framework Convention on Climate Change[EB/OL]. (1998-03-16) [2021-08-24]. http://www.npc.gov.cn/zgrdw/npc/zxft/zxft8/2009-08/24/content_1515037.htm.
|
[2] |
上海市发展和改革委员会. 上海市温室气体排放核算与报告指南(试行)[EB/OL]. (2012-12-11) [2021-08-24]. https://www.carbonstop.net/static/upload/shanghai_carbonaccounting_guideline.pdf.
|
|
Shanghai Municipal Development & Reform Commission. Shanghai greenhouse gas emission accounting and reporting guidelines (trial)[EB/OL]. (2012-12-11) [2021-08-24]. https://www.carbonstop.net/static/upload/shanghai_carbonaccounting_guideline.pdf.
|
[3] |
Intergovernmental Panel on Climate Change. 2006 IPCC guidelines for national greenhouse gas inventories-corrected as of July 2020[EB/OL]. (2020-07-22) [2020-07-23] https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.
|
[4] |
LIU Z, GUAN D B, WEI W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338.
doi: 10.1038/nature14677
URL
|
[5] |
SHAN Y L, LIU J H, LIU Z, et al. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors[J]. Applied Energy, 2016, 184: 742-750.
doi: 10.1016/j.apenergy.2016.03.073
URL
|
[6] |
CAMBALIZA M O L, SHEPSON P B, CAULTON D R, et al. Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions[J]. Atmospheric Chemistry and Physics, 2014, 14(17): 9029-9050.
|
[7] |
FIEHN A, KOSTINEK J, ECKL M, et al. Estimating CH4, CO2, and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach[J]. Atmospheric Chemistry and Physics, 2020, 20(21): 12675-12695.
|
[8] |
LAURI M. Analysis: Coronavirus temporarily reduced China’s CO2 emissions by a quarter[EB/OL]. (2020-02-19) [2020-03-30]. https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter.
|
[9] |
袁文俊. 复杂网络视角下我国省域间贸易隐含碳排放流动研究[D]. 西安: 西安建筑科技大学, 2020.
|
|
YUAN Wenjun. Research on the flow of embodied carbon emissions in inter-provincial trade from the perspective of complex network[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
|
[10] |
邸小龙. 基于复杂网络的中国产业部门间隐含碳排放流动结构演化研究[D]. 西安: 西安建筑科技大学, 2020.
|
|
DI Xiaolong. Research on evolution of embodied carbon emissions flow structure among Chinese industrial sectors based on complex network[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
|
[11] |
李思寰. 跨区域汽车尾气排放减排责任测算与分摊[J]. 统计与决策, 2017(24): 93-96.
|
|
LI Sihuan. Cross-regional vehicle exhaust emission responsibility calculation and allocation[J]. Statistics & Decision, 2017(24): 93-96.
|
[12] |
CHENG Y H, ZHANG N, WANG Y, et al. Modeling carbon emission flow in multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3562-3574.
doi: 10.1109/TSG.2018.2830775
URL
|
[13] |
KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: A network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2386-2394.
doi: 10.1109/TSG.2015.2388695
URL
|
[14] |
CHEN G, CHEN B, ZHOU H, et al. Life cycle carbon emission flow analysis for electricity supply system: A case study of China[J]. Energy Policy, 2013, 61: 1276-1284.
doi: 10.1016/j.enpol.2013.05.123
URL
|
[15] |
李立. 中国国家及区域碳排放分析: 基于LMDI分解和K-均值聚类[D]. 南京: 南京大学, 2017.
|
|
LI Li. An analysis on national and regional carbon emissions in China—based on LMDI and K-means[D]. Nanjing: Nanjing University, 2017.
|
[16] |
国家电力投资集团有限公司. 有“能源大脑”,不惧停电[EB/OL]. (2021-02-24) [2021-02-24]. https://power.in-en.com/html/power-2383917.shtml.
|
|
State Power Investment Group Co., Ltd.. An ‘energy brain’ make us not afraid of power outages[EB/OL]. (2021-02-24) [2021-02-24]. https://power.in-en.com/html/power-2383917.shtml.
|
[17] |
赵莉, 候兴哲, 胡君, 等. 基于改进k-means算法的海量智能用电数据分析[J]. 电网技术, 2014, 38(10): 2715-2720.
|
|
ZHAO Li, HOU Xingzhe, HU Jun, et al. Improved k-means algorithm based analysis on massive data of intelligent power utilization[J]. Power System Technology, 2014, 38(10): 2715-2720.
|
[18] |
张宜浩, 金澎, 孙锐. 基于改进k-means算法的中文词义归纳[J]. 计算机应用, 2012, 32(5): 1332-1334.
|
|
ZHANG Yihao, JIN Peng, SUN Rui. Chinese word sense induction based on improved k-means algorithm[J]. Journal of Computer Applications, 2012, 32(5): 1332-1334.
doi: 10.3724/SP.J.1087.2012.01332
URL
|