上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (3): 293-302.doi: 10.16183/j.cnki.jsjtu.2021.436
所属专题: 《上海交通大学学报》“新型电力系统与综合能源”专题(2022年1~6月)
张鹏飞1, 徐静怡2, 郭巍3, 吴蔚4, 钟晨5, 魏文栋6()
收稿日期:
2021-11-01
出版日期:
2022-03-28
发布日期:
2022-04-01
通讯作者:
魏文栋
E-mail:wendongwei@sjtu.edu.cn
作者简介:
张鹏飞(1992-),男,河南省焦作市人,博士生,主要研究方向为能源环境经济学、资源环境管理.
基金资助:
ZHANG Pengfei1, XU Jingyi2, GUO Wei3, WU Wei4, ZHONG Chen5, WEI Wendong6()
Received:
2021-11-01
Online:
2022-03-28
Published:
2022-04-01
Contact:
WEI Wendong
E-mail:wendongwei@sjtu.edu.cn
摘要:
我国“碳达峰、碳中和”目标的实现在很大程度上依赖于电力系统的低碳转型,而现有研究很少从区域尺度研究电力系统低碳转型.综合使用政府间气候变化专门委员会温室气体清单编制方法、网络模型分析法量化了粤港澳大湾区电力生产和消费引致的碳排放,并使用对数平均迪氏指数分析法分析了社会经济因素对大湾区电力碳排放的影响.结果表明:香港、澳门电力低碳转型进展缓慢,广东省低碳电力份额持续提高;快速扩大的经济规模和电力需求是大湾区排放增长的最主要驱动因素;外部低碳电力的输入以及部门用电效率的提升抵消了部分排放增长.
中图分类号:
张鹏飞, 徐静怡, 郭巍, 吴蔚, 钟晨, 魏文栋. 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报, 2022, 56(3): 293-302.
ZHANG Pengfei, XU Jingyi, GUO Wei, WU Wei, ZHONG Chen, WEI Wendong. Low-Carbon Transformation of the Power System in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 293-302.
[1] | United Nations. United nations digital library [DB/OL]. (2020-09-22)[2021-07-28]. https://digitallibrary.un.org/record/3893029?ln=en |
[2] | CHEN H, KANG J N, LIAO H, et al. Costs and potentials of energy conservation in China’s coal-fired power industry: A bottom-up approach considering price uncertainties[J]. Energy Policy, 2017, 104:23-32. |
[3] | ADEDOYIN F F, GUMEDE M I, BEKUN F V, et al. Modelling coal rent, economic growth and CO2 emissions: Does regulatory quality matter in BRICS economies?[J]. Science of the Total Environment, 2020, 710:136284. |
[4] | ZHANG P F, CAI W Q, YAO M T, et al. Urban carbon emissions associated with electricity consumption in Beijing and the driving factors[J]. Applied Energy, 2020, 275:115425. |
[5] | TONG D, ZHANG Q, DAVIS S J, et al. Targeted emission reductions from global super-polluting power plant units[J]. Nature Sustainability, 2018, 1(1):59-68. |
[6] | GAVRILOVA O, JONAS M, ERB K, et al. International trade and Austria’s livestock system: Direct and hidden carbon emission flows associated with production and consumption of products[J]. Ecological Economics, 2010, 69(4):920-929. |
[7] | QU S, WANG H X, LIANG S, et al. A Quasi-Input-Output model to improve the estimation of emission factors for purchased electricity from inter-connected grids[J]. Applied Energy, 2017, 200:249-259. |
[8] | 魏文栋, 张鹏飞, 李佳硕. 区域电力相关碳排放核算框架的构建和应用[J]. 中国人口·资源与环境, 2020, 30:38-46. |
WEI Wendong, ZHANG Pengfei, LI Jiashuo, et al. Construction and application of regional power related to carbon emission accounting framework[J]. Chinese Journal of Population, Resources and Environment, 2020, 30:38-46. | |
[9] | TONG D, ZHANG Q, ZHENG Y X, et al. Committed emissions from existing energy infrastructure jeopardize 1.5 ℃ climate target[J]. Nature, 2019, 572(7769):373-377. |
[10] | CUI R Y, HULTMAN N, EDWARDS M R, et al. Quantifying operational lifetimes for coal power plants under the Paris goals[J]. Nature Communications, 2019, 10:4759. |
[11] | ZAPPA W, JUNGINGER M, VAN DEN BROEK M. Is a 100% renewable European power system feasible by 2050?[J]. Applied Energy, 2019, 233/234:1027-1050. |
[12] | ZHONG J, BOLLEN M, RÖNNBERG S. Towards a 100% renewable energy electricity generation system in Sweden[J]. Renewable Energy, 2021, 171:812-824. |
[13] | COLE W J, GREER D, DENHOLM P, et al. Quantifying the challenge of reaching a 100% renewable energy power system for the United States[J]. Joule, 2021, 5(7):1732-1748. |
[14] | GULAGI A, ALCANZARE M, BOGDANOV D, et al. Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines[J]. Renewable and Sustainable Energy Reviews, 2021, 144:110934. |
[15] | SCHMIDT T S, STEFFEN B, EGLI F, et al. Adverse effects of rising interest rates on sustainable energy transitions[J]. Nature Sustainability, 2019, 2(9):879-885. |
[16] | EGLI F, STEFFEN B, SCHMIDT T S. A dynamic analysis of financing conditions for renewable energy technologies[J]. Nature Energy, 2018, 3(12):1084-1092. |
[17] | PENG X, TAO X, FENG K, et al. Drivers toward a low-carbon electricity system in China’s provinces[J]. Environmental Science & Technology, 2020, 54(9):5774-5782. |
[18] | KANG J D, NG T S, SU B, et al. Optimizing the Chinese electricity mix for CO2 emission reduction: An input-output linear programming model with endogenous capital[J]. Environmental Science & Technology, 2020, 54(2):697-706. |
[19] | TONG D, ZHANG Q, LIU F, et al. Current emi-ssions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030[J]. Environmental Science & Technology, 2018, 52(21):12905-12914. |
[20] | CUI Y R, HULTMAN N, EDWARDS M, et al. A high ambition coal phaseout in China: Feasible strategies through a comprehensive plant-by-plant assessment[R]. University of Maryland Center for Global Sustainability: The Energy Research Institute of the National Development and Reform Commission of China, 2020. |
[21] | WANG M, YAO M T, WANG S S, et al. Study of the emissions and spatial distributions of various power-generation technologies in China[J]. Journal of Environmental Management, 2021, 278:111401. |
[22] | WEI W D, WANG X B, ZHU H, et al. Carbon emissions of urban power grid in Jing-Jin-Ji region: Characteristics and influential factors[J]. Journal of Cleaner Production, 2017, 168:428-440. |
[23] | WANG J X, ZHONG H W, YANG Z F, et al. Exploring the trade-offs between electric heating policy and carbon mitigation in China[J]. Nature Communications, 2020, 11:6054. |
[24] | WEI W D, HAO S J, YAO M T, et al. Unbalanced economic benefits and the electricity-related carbon emissions embodied in China’s interprovincial trade[J]. Journal of Environmental Management, 2020, 263:110390. |
[25] | WEI W D, ZHANG P F, YAO M T, et al. Multi-scope electricity-related carbon emissions accounting: A case study of Shanghai[J]. Journal of Cleaner Production, 2020, 252:119789. |
[26] | LI W B, LONG R Y, ZHANG L L, et al. Greenhouse gas emission transfer of inter-provincial electricity trade in China[J]. International Journal of Environmental Research and Public Health, 2020, 17(22):8375. |
[27] | 中国共产党中央委员会. 中共中央关于制定国民经济和社会发展第十三个五年计划的建议[M]. 北京: 中央文献出版社, 2016. |
Central Committee of the Communist Party of China. Recommendations of the central committee of the communist party of china on the formulation of the 13th five-year plan for national economic and social development[M]. Beijing: Central Literature Press, 2016. | |
[28] | QU S, LIANG S, XU M. CO2 emissions embodied in interprovincial electricity transmissions in China[J]. Environmental Science & Technology, 2017, 51(18):10893-10902. |
[29] | QU S, LI Y, LIANG S, et al. Virtual CO2 emission flows in the global electricity trade network[J]. Environmental Science & Technology, 2018, 52(11):6666-6675. |
[30] | DE CHALENDAR J A, TAGGART J, BENSON S M. Tracking emissions in the US electricity system[J]. PNAS, 2019, 116(51):25497-25502. |
[31] | CHINI C M, DJEHDIAN L A, LUBEGA W N, et al. Virtual water transfers of the US electric grid[J]. Nature Energy, 2018, 3(12):1115-1123. |
[32] | ANG B W. The LMDI approach to decomposition analysis: A practical guide[J]. Energy Policy, 2005, 33(7):867-871. |
[33] | ANG B W. LMDI decomposition approach: A guide for implementation[J]. Energy Policy, 2015, 86:233-238. |
[34] | 国家统计局. 国家数据[DB/OL].(2021-09-20)[2021-10-20]. https://data.stats.gov.cn/ |
National Bureau of Statistics of China. National data[DB/OL].(2021-09-20)[2021-10-20]. https://data.stats.gov.cn/ | |
[35] | 国家统计局. 中国能源统计年鉴2018[M]. 北京: 中国统计出版社, 2019. |
National Bureau of Statistics. China energy statistical yearbook 2018[M]. Beijing: China Statistics Press, 2018. | |
[36] | 《中国电力年鉴》编辑委员会. 2019中国电力年鉴[M]. 北京: 中国电力出版社, 2019. |
Editorial Committee of China Electricity Yearbook. 2019 China electricity yearbook[M]. Beijing: China Electric Power Press, 2019. | |
[37] | 澳门特别行政区政府统计暨普查局. 能源统计[DB/OL]. (2021-04-25)[2021-07-23]. https://www.dsec.gov.mo/en-US/ |
Government of Macao Special Administrative Region Statistics and Census Service. Energy statistics[DB/OL]. (2021-04-25)[2021-07-23]. https://www.dsec.gov.mo/en-US/ | |
[38] | 澳门环境保护局. 澳门环境状况报告2018[M]. 澳门: 环境保护局, 2018. |
Environmental Protection Bureau in Macao Special Administrative Region. Macao environmental status report 2018[M]. Macao: Environmental Protection Bureau, 2018. | |
[39] | 香港特别行政区政府统计处. 香港能源统计[M]. 香港: 政府统计处刊物出版组, 2019. |
Census and Statistics Department in Hong Kong Special Administrative Region. Hong Kong energy statistics[M]. Hong Kong: Publications Unit of C&SD, 2019. | |
[40] | 中国电力企业联合会. 电力工业统计资料汇编2017[M]. 北京: 中国电力企业联合会, 2018. |
China Electricity Council. Electricity industry statistics compilation 2017[M]. Beijing: China Electricity Council, 2018. | |
[41] | 广东省人民政府. 广东省国民经济和社会发展第十四个五年规划和2035年远景目标纲要[R/OL]. (2021-04-25) [2021-07-30]. http://www.gd.gov.cn/zwgk/wjk/qbwj/yf/content/post_3268751.html |
The People’s Government of Guangdong Province. The fourteenth five-year plan for national economic and social development of Guangdong province and the outline of long-term goals for 2035[R/OL]. (2021-04-25) [2021-07-30]. http://www.gd.gov.cn/zwgk/wjk/qbwj/yf/content/post_3268751.html | |
[42] | 香港特别行政区政府. 香港气候行动蓝图2030[R/OL]. (2017-01-20)[2021-07-30]. https://sc.isd.gov.hk/TuniS/www.info.gov.hk/gia/general/201701/20/P2017012000724.htm |
Hong Kong Special Administrative Region Government. Hong Kong's climate action plan 2030+[R/OL]. (2017-01-20)[2021-07-30]. https://sc.isd.gov.hk/TuniS/www.info.gov.hk/gia/general/201701/20/P2017012000724.htm | |
[43] | 香港特别行政区政府. 粤港澳大湾区发展规划纲要[R/OL]. (2019-02-20)[2021-07-30]. http://www.shunde.gov.cn/data/2019/05/23/1558575813.pdf |
State Council of the People’s Republic of China. Outline of development plan for Guangdong-Hong Kong-Macao Greater Bay Area[R/OL]. (2019-02-20)[2021-07-30]. http://www.shunde.gov.cn/data/2019/05/23/1558575813.pdf |
[1] | 陈赟, 沈浩, 王佳裕, 赵文恺, 潘智俊, 王晓慧, 肖银璟. 基于“能源大脑”的城市区域碳排放实时计算方法[J]. 上海交通大学学报, 2022, 56(9): 1111-1117. |
[2] | 黄强, 郭怿, 江建华, 明波. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
[3] | 孙欣, 严佳嘉, 谢敬东, 孙波. “碳中和”目标下电气互联系统有功-无功协同优化模型[J]. 上海交通大学学报, 2021, 55(12): 1554-1566. |
[4] | 陈文溆乐, 向月, 彭光博, 刘友波, 刘俊勇. “双碳”目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576. |
[5] | 黄莹,马殿光,唐厚君,陈恩策,张宁云,姚辰. 超颖材料特性对无线电力传输系统的影响[J]. 上海交通大学学报(自然版), 2014, 48(09): 1213-1217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||