上海交通大学学报, 2023, 57(3): 335-344 doi: 10.16183/j.cnki.jsjtu.2021.236

机械与动力工程

多轴特种车辆缺胎行驶动力学特性研究

黄通, 高钦和, 刘志浩,, 王冬

火箭军工程大学 导弹工程学院, 西安 710025

Driving Dynamic Characteristics of Multi-Axle Special Vehicles in Shortage of Tires

HUANG Tong, GAO Qinhe, LIU Zhihao,, WANG Dong

College of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China

通讯作者: 刘志浩,副教授;E-mail:zhliu201@163.com.

责任编辑: 孙启艳

收稿日期: 2021-06-29   接受日期: 2021-08-1  

基金资助: 国家自然科学基金(51905541)
陕西自然科学基础研究计划(2020JQ487)
陕西省高校科协青年人才托举计划(20190412)

Received: 2021-06-29   Accepted: 2021-08-1  

作者简介 About authors

黄通(1995-),博士生,从事特种车辆分析与评估技术研究.

摘要

为了探究多轴特种车辆在轮胎损失极限工况下的行驶特性,基于TruckSim车辆动力学软件,建立包括整车参数、动力传动与制动系统、车桥与悬挂系统、转向系统和轮胎系统的五轴特种车辆动力学仿真试验模型,通过对仿真模型进行调整和改进,建立符合实车驱动的特种车辆动力学模型.为重点分析轮胎缺失状态的影响,以轮胎六分力试验为基础,选取TruckSim中性能相似的非线性轮胎模型进行修改,通过进行0~80~0 km/h直线加速制动平顺性仿真试验和双移线操稳性仿真试验,研究不同位置处轮胎缺失状态下的车辆平顺特性和操稳特性.同时,以车辆质心偏移量为标准,分析讨论不同行驶速度下的最大缺失轮胎数量,提出不同行驶速度下缺胎工况的轮胎布置方法以及各桥轮胎对车辆行驶影响的程度级别.研究结果表明:多轴特种车辆具备在缺胎工况下行驶的极限条件,不同位置处轮胎缺失对车辆的最大行驶速度影响不显著;该型车辆各桥轮胎对车辆行驶影响的重要程度依次为一桥、五桥、三桥、二桥和四桥;车辆分别以50、30和20 km/h速度行驶时,最大缺失轮胎数量分别为1、2和3个.研究结论为多轴特种车辆行驶安全性评估提供了理论支撑.

关键词: 多轴特种车辆; 轮胎缺失; 车辆建模; 仿真试验; 质心偏移量

Abstract

In order to investigate the driving characteristics of multi-axis special vehicle under the limit condition of missing tires, a five-axis special vehicle dynamics simulation test model including vehicle parameters, power transmission and braking system, axle and suspension system, steering system, and tire system was established based on the vehicle dynamics software TruckSim. Focusing on the analysis of the effect of tire deficiency and based on the tire six component test, the simulation test model of tire parameter was modified and the 0—80—0 km/h linear acceleration brake comfort simulation test and double line operating stability simulation test were conducted to study the smooth features and stability characteristics under the condition of tire deficiency at different positions. Based on the deviation of the centroid of the vehicle, the maximum number of missing tires at different driving speeds was analyzed, and the tire layout methods as well as the degree of influence of each axle tire on the vehicle at different driving speeds were proposed. The results show that the multi-axle special vehicle has the limit condition of driving under the condition of tire deficiency, and the tire deficiency at different positions has little effect on the driving speed of the vehicle. The influence of each axle tire on the driving of this type of vehicle is ranked in order of importance, which are the first axle, the fifth axle, the third axle, the second axle, and the fourth axle. When the vehicle travels at 50 km/h, 30 km/h, and 20 km/h, the maximum numbers of missing tires are 1, 2, and 3, respectively. This paper can provide theoretical support for the assessment of driving safety of multi-axle special vehicles.

Keywords: multi-axle special vehicle; tire deficiency; vehicle modeling; simulation test; cetroid offset

PDF (7603KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄通, 高钦和, 刘志浩, 王冬. 多轴特种车辆缺胎行驶动力学特性研究[J]. 上海交通大学学报, 2023, 57(3): 335-344 doi:10.16183/j.cnki.jsjtu.2021.236

HUANG Tong, GAO Qinhe, LIU Zhihao, WANG Dong. Driving Dynamic Characteristics of Multi-Axle Special Vehicles in Shortage of Tires[J]. Journal of Shanghai Jiaotong University, 2023, 57(3): 335-344 doi:10.16183/j.cnki.jsjtu.2021.236

随着国家基础设施建设和国防工业需求的不断提高,专用工程车辆也逐渐向大型化和重型化的方向快速发展.尤其是在国防工业中使用的多轴特种车辆,作为大型武器装备的承载、运输和发射平台,必须具备在复杂道路工况和恶劣运输环境下的高机动性和可操作性[1].

轮胎作为车辆与地面接触的唯一部件,其力学性能将直接影响车辆动力学特性[2-3].由于特种车辆使用环境的特殊性,其轮胎系统不仅面临常规磨损、刺破、裂纹和爆胎等损伤现象[4],还面临敌方的打击和破坏,如爆炸冲击波、破片和弹丸等毁伤方式[5].车辆轮胎系统的防护能力一般比较薄弱,且轮胎使用频率较大,使得轮胎系统容易出现损伤和损坏状况.国内外针对轮胎损伤状态下车辆行驶特性的研究主要集中在爆胎动力学与控制[6-9],以及磨损状态下的轮胎动力学特性[10-11].爆胎动力学重点研究了在爆胎过程中车辆的动力学响应以及爆胎车辆的主动安全控制,以期避免车辆在爆胎后由于转向过大而导致的失稳或翻车现象[12-14].

与普通车辆工作不同,多轴特种车辆在任务执行过程中具有较高的命令性,在轮胎受损后,仍要尽可能保证完成任务,这就需要在轮胎已受损的状态下继续行驶.而当已受损的轮胎安装在车辆上行驶时,由于拖滚和制动等摩擦的影响,容易出现自燃等现象,这对车辆自身结构和行驶安全都带来了极大的隐患和危害,特别是在车辆携带武器装备时危害性更大.

基于此,考虑多轴特种车辆尺寸较大、轮胎数量较多的条件,本文开展多轴特种车辆缺胎状态下的行驶特性研究.缺胎行驶状态试验具有危险性,因此基于TruckSim车辆动力学软件建立五轴特种车辆动力学仿真模型并开展缺胎行驶试验,分析不同位置处轮胎缺失状态下的车辆平顺特性和操稳特性,提出不同行驶速度缺胎工况的布置方法以及各桥轮胎对车辆行驶影响的程度级别.研究结果为多轴特种车辆的行驶安全性评估提供参考.

1 缺胎行驶仿真试验

TruckSim是一种集成建模、分析和动态模拟的汽车整车动力学仿真软件.在建模过程中只需要输入软件所需的关键参数,与传统的车辆性能分析软件相比,具有高效、可靠和精度高的优势[15].

由于特种车辆的特殊性,在TruckSim中没有五轴特种车辆的模型,但五轴特种车辆与五轴载货卡车具有相同的底盘类型,因此,本文以TruckSim中TS 5A Tractors模型为基础进行某型五轴特种车辆参数建模,其中车辆建模主要包括整车参数、动力传动与制动系统、车桥与悬挂系统、转向系统和轮胎系统,忽略空气动力学的影响.

试验条件选择0~80~0 km/h直线加速制动试验进行平顺性测试;选择双移线试验进行操稳性测试.

1.1 车辆建模

(1) 整车参数建模.

仿真原型车为国产某五轴10×8特种车辆,整车基本参数如表1所示,在TruckSim中整车参数建模输入如表2所示.

表1   整车基本参数

Tab.1  Basic parameters of vehicle

簧载
质量/kg
长度/
mm
宽度/
mm
高度/
mm
质心距离坐标原点距离/mm转动惯量/(kg·m-2)
纵向横向垂向xyz
437201290024602310447001080184500511500429500

新窗口打开| 下载CSV


表2   整车参数建模

Tab.2  Parameter modeling of vehicle

侧倾惯量/
(kg·m-2)
俯仰惯量/
(kg·m-2)
偏转惯量/
(kg·m-2)
惯性积/(kg·m2)回转半径/m
xy平面xz平面yz平面xyz
1845005115004295000266002.0543.4203.134

新窗口打开| 下载CSV


(2) 动力传动与制动系统建模.

TruckSim软件中动力传动系统建模主要由发动机、离合器、分动箱和差速器等组成.实车所安装的发动机性能与软件内部的330 kW Diesel (210 0RPM)发动机相似,可修改调用.与普通车辆后桥驱动不同,该型特种车辆采用前四桥驱动方式,在TruckSim中没有可直接调用的10×8前桥驱动方式,本文选择10×10全驱传动模型,通过对四桥和五桥分动箱传输比进行修改,将四桥和五桥分动箱传输比定义为1∶0,建立了符合实车驱动模型的动力传动模型如图1所示,分动箱和差速器等参数按照实车性能参数进行设置.制动系统按照实车要求均选择强度较大的10 kN·m具有防抱死制动系统(ABS)模块的气压制动系统.

图1

图1   动力传动系统建模

Fig.1   Powertrain of vehicle


(3) 车桥与悬挂系统建模.

根据实车配置情况,各桥悬挂具体参数如表3所示,并在TruckSim中选择10 t的具有弹性阻尼特性(K&C)的独立悬架模型进行修改调用.

表3   各桥悬挂参数

Tab.3  Suspension parameters of axles

各桥非
簧载质
量/kg
车桥横摆
转动惯量/
(kg·m-2)
轮距/
mm
各桥
质心
高/mm
各桥质
心横向
坐标/mm
各桥车
轮前束
角/(°)
各桥车轮
外倾角/
(°)
1-2轴
距/m
2-3轴
距/m
3-4轴
距/m
4-5轴
距/m
悬挂刚度/
(N·mm-1)
悬挂阻尼/
(kN·s·m-1)
870295182 05800001.94.21.81.860050

新窗口打开| 下载CSV


(4) 转向系统建模.

该型车辆采用前两桥和后两桥转向的方式,选择中轴距转向轴模型调用修改对应的转向轮定位参数, 名义传动比为25∶1.转向系统的弹性运动特性采用系统的默认设置.

(5) 轮胎系统建模.

轮胎系统是本文的重点研究对象,为了更符合实车运行状态,以轮胎六分力测试试验为研究基础,选取TruckSim中性能相似的3500 kg级、半径为528 mm非线性轮胎模型调用修改,且各轮均为单胎模式.轮胎参数设置如图2所示,其中,设置标准垂向力Fz= 65000 N,有效滚动半径和自由半径均为630 mm,弹性刚度为 1850 N/mm,最大承载力为 1000000 N,滚动阻力系数为 0.0041,弹力损耗系数为 0.0000256 h/km.轮胎六分力测试如图3所示,侧偏和纵滑特性如图4图5所示,其中a为回正力矩, f1为侧向力,α为侧偏特性, f2为纵向力,γ为滑动率.

图2

图2   轮胎参数模型

Fig.2   Parameter model of tire


图3

图3   轮胎六分力测试试验

Fig.3   Six component force test for tire


图4

图4   轮胎侧偏特性试验结果

Fig.4   Cornering characteristics of test


图5

图5   制动状态的轮胎纵滑特性试验结果

Fig.5   Longitudinal slip characteristics of test


1.2 直线加速制动仿真试验

直线加速制动仿真试验主要考察车辆在各缺胎工况下的偏航特性和平顺特性.选择TruckSim中0~80~0 km/h试验模块进行测试,高附着平直路面设置附着系数为0.85,滚动阻力系数为1.0,测试环境为无风环境.求解器选择ADAMS-Moulton进行求解.车辆行驶速度与时间如表4所示,行驶轨迹和质心垂向加速度如图6图7所示,其中,x为横向位移,y为纵向位移,G为质心垂向加速度,t为测试时间.

表4   车辆行驶速度与对应时间

Tab.4  Vehicle speed and corresponding time

名称最大速度/
(km·h-1)
最大速度
对应时间/s
完备轮胎8073.825
缺一桥右胎8087.900
缺二桥右胎8073.950
缺三桥右胎8087.250
缺四桥右胎8073.700
缺五桥右胎8077.700

新窗口打开| 下载CSV


图6

图6   车辆行驶轨迹

Fig.6   Vehicle track


图7

图7   车辆质心垂向加速度

Fig.7   Vertical acceleration of vehicle centroid


表4结果表明,各处轮胎缺失对最大行驶速度影响不大,一桥和三桥最大速度到达时间相对延长.这是由于缺失轮胎的垂向载荷被其他轮胎承担,使得其他轮胎径向力增大.垂向载荷变化如图8所示,其中,l为长度,w为宽度,ε为垂向载荷增量.

图8

图8   不同位置处垂向载荷变化规律

Fig.8   Change rule of vertical load


图6图7结果表明,一桥和三桥右胎缺失对车辆偏航影响较大,二桥和四桥右胎缺失影响较小,这是由于轮胎缺失后引起剩余轮胎侧向力变化,轮胎侧向力变化如图9所示.此外,轮胎缺失工况对车辆垂向加速度的影响主要集中在车辆启动阶段和制动阶段.在车辆启动阶段,各桥轮胎缺失工况均出现幅值较大的振动;在车辆制动阶段,一桥、二桥和五桥右胎缺失工况出现了较为明显的制动振动.

图9

图9   不同轮胎处侧向力变化规律

Fig.9   Change rule of side force


1.3 双移线仿真试验

双移线仿真试验主要考察车辆在各缺胎工况下的操稳特性.选择TruckSim中的Double Lane Change模块进行测试,试验速度为恒定目标速度执行双移线运动.路面设置为附着系数为0.85,滚动阻力系数为1.0的高附着平直路面,无风环境,试验轨迹如图10所示,其中z为侧向位移.

图10

图10   双移线轨迹

Fig.10   Tracking of double lane change


按照实际行驶环境设置目标速度为50 km/h,仿真频率设置为 1 000 Hz,输出频率设置为40 Hz,即每隔0.025 s记录一个输出数据点,求解器选择内部ADAMS-Moulton进行求解.仿真试验结果如图11图12所示,其中,β为侧倾角,ω'为横摆角速度.

图11

图11   左转工况

Fig.11   Left turn condition


图12

图12   右转工况

Fig.12   Right turn condition


图11图12结果表明,在50 km/h稳速直线行驶阶段,缺一桥右胎时的侧倾角为3.49°,缺二桥右胎时的侧倾角为2.85°,缺三桥右胎时的侧倾角为2.62°,缺四桥右胎时的侧倾角为2.96°,缺五桥右胎时的侧倾角为3.43°.此外,各缺胎工况下的横摆角速度均控制在0.1 (°)/s内;在稳速左转、右转行驶阶段,缺五桥右胎时的侧倾角最大,分别达到8.74° 和7.21°.缺三桥右胎时的侧倾角幅值虽然不是最大,但波动很明显,这主要是由于三桥距离车辆质心最近,三桥右胎的缺失对车辆质心位置影响较大.此外,缺一桥右胎、缺二桥右胎、缺四桥右胎和缺五桥右胎工况均出现了明显的横摆角速度突变,而缺三桥右胎工况与完备轮胎系统工况的横摆角速度相比,横摆角速度变化更平稳,这主要是由于实车三桥不具备转向功能,在缺失三桥右胎后,转向横摆现象反而减小.且与左转相比,右转时横摆角速度明显增大,在缺五桥右胎工况下达到4.12 (°)/s.

2 分析与讨论

试验结果表明,与正常行驶工况相比,缺胎行驶工况轮胎垂向载荷分布产生变化,引起各位置处轮胎力学特性变化,进而导致车辆行驶动力学特性改变.

多轴特种车辆轮胎垂向载荷分布和车辆行驶姿态受车辆质心位置影响较大,以车辆质心偏移预定轨迹的值为指标,对不同缺胎工况下各位置处轮胎垂向载荷分布进行量化和表征.计算在50 km/h稳速行驶速度下执行双移线仿真试验时各缺胎工况的质心偏移量(Δx),如图13所示,结果表明如下.

图13

图13   车辆质心偏移量

Fig.13   Vertical centroid offset


(1) 在稳速直线行驶阶段,各缺胎工况下的质心偏移量幅值和波动均不大.其中一桥和五桥右胎缺失状态下质心偏移量幅值最大,达到0.25 m,这是由于一桥和五桥位于车辆前后边缘,在轮胎缺失后,起补偿支撑作用的其他轮胎只有一侧,结合图8(a)图8(e)可知,在一桥和五桥右胎缺失后,二桥和四桥右胎增量较大.而处于中间的二桥、三桥和四桥是临近两侧轮胎的补偿支撑,垂向载荷变化量相对较小,因此质心偏移量较小,处于0.1 m左右.

(2) 在稳速转向行驶阶段,一桥右胎缺失工况质心偏移量最大,达到3.55 m,并出现明显的失稳甩尾现象.三桥和五桥右胎缺失工况的质心偏移量次之,二桥和四桥右胎缺失工况的质心偏移量最小.

因此,该型五轴特种车辆各桥轮胎对车辆行驶影响的重要程度依次为一桥、五桥、三桥、二桥和四桥.在紧急状态时,可以采用四桥轮胎进行及时更换,保证其他车桥轮胎的完整性.

为了讨论该型车辆最大的轮胎损失数量,按照各桥轮胎对车辆行驶影响的重要程度,同时考虑实车装配的轮胎最大承载力影响,依次分析在缺失四桥双胎、缺失二桥双胎、二桥四桥对边缺胎和缺失四桥双胎二桥一胎的工况,计算结果如图14~16所示.

图14

图14   50 km/h行驶时车辆质心偏移量

Fig.14   Vertical centroid offset at 50 km/h


图15

图15   30 km/h行驶时车辆质心偏移量

Fig.15   Vertical centroid offset at 30 km/h


图16

图16   20 km/h行驶时车辆质心偏移量

Fig.16   Vertical centroid offset at 20 km/h


图13~16结果表明,随着行驶速度降低,车辆质心偏移量逐渐减小,且二桥轮胎同时缺失对车辆质心偏移量影响较大.当车辆需要以50 km/h速度行驶时,最大缺失轮胎数量为1个,即四桥或二桥缺失1个轮胎,该型车辆仍然可以保持质心偏移稳定在0.3 m以内,符合该型车辆安全行驶技术指标;而当车辆以30 km/h速度行驶时,其最大缺失轮胎数量为2个,即四桥双胎缺失或二桥四桥对边缺胎;当车辆以20 km/h速度行驶时,最大缺失轮胎数量为3个,即四桥双胎缺失和二桥缺失1个轮胎.

3 结论

本文基于TruckSim车辆动力学软件建立了五轴特种车辆动力学仿真试验模型,通过研究不同位置处轮胎缺失状态下的车辆平顺特性和操稳特性,得出以下结论:

(1) 与常规普通车辆相比,多轴特种车辆尺寸较大、轮胎数量较多,具备在缺胎工况下行驶的极限条件,且不同位置处轮胎缺失对车辆的最大行驶速度影响不显著.

(2) 与正常行驶工况相比,缺胎行驶工况轮胎垂向载荷分布产生变化,引起各位置处轮胎力学特性变化,进而导致车辆行驶动力学特性改变.该型五轴特种车辆各桥轮胎对车辆行驶影响的重要程度依次为一桥、五桥、三桥、二桥和四桥.

(3) 当车辆以50 km/h速度行驶时,最大缺失轮胎数量为1个,即四桥或二桥缺失1个轮胎;当以30 km/h速度行驶时,最大缺失轮胎数量为2个,即四桥双胎缺失或二桥四桥对边缺胎;当以20 km/h速度行驶时,最大缺失轮胎数量为3个,即四桥双胎缺失和二桥缺失1个轮胎.

参考文献

王兴东. 提高多轴重型越野车制动性能的理论与试验研究[D]. 武汉: 华中科技大学, 2005.

[本文引用: 1]

WANG Xingdong. Research on improvement of braking performance for multi-axle heavy duty off-road vehicle by theoretical and experimental methods[D]. Wuhan: Huazhong University of Science and Technology, 2005.

[本文引用: 1]

刘志浩, 高钦和, 于传强, .

重载轮胎面内欧拉梁模型及耦合振动特性研究

[J]. 振动工程学报, 2019, 32(1): 107-119.

[本文引用: 1]

LIU Zhihao, GAO Qinhe, YU Chuanqiang, et al.

In-plane Euler beam tire model and coupling vibration analysis of heavy loaded radial tire

[J]. Journal of Vibration Engineering, 2019, 32(1): 107-119.

[本文引用: 1]

刘志浩, 高钦和.

考虑充气压力效应的重载轮胎面内振动模态建模及参数辨识

[J]. 振动与冲击, 2018, 37(18): 184-192.

[本文引用: 1]

LIU Zhihao, GAO Qinhe.

Analytical modelling of in-plane vibration modes and structural parameters identification of heavy-loaded radial tires with different inflation pressure

[J]. Journal of Vibration and Shock, 2018, 37(18): 184-192.

[本文引用: 1]

张伟旗.

汽车轮胎常见故障分析及失效检查处理

[J]. 汽车零部件, 2016(10): 83-86.

[本文引用: 1]

ZHANG Weiqi.

The automobile tire common fault analysis and failure inspection

[J]. Automobile Parts, 2016(10): 83-86.

[本文引用: 1]

马春茂, 孙卫平, 李炎, .

武器装备毁伤评估研究进展

[J]. 火炮发射与控制学报, 2019, 40(4): 96-101.

[本文引用: 1]

MA Chunmao, SUN Weiping, LI Yan, et al.

Research progress in damage assessment of weapon equipment

[J]. Journal of Gun Launch & Control, 2019, 40(4): 96-101.

[本文引用: 1]

向飞飞, 陈学军, 孙华刚, .

爆胎对牵引火炮行驶性能仿真分析

[J]. 振动与冲击, 2014, 33(19): 194-198.

[本文引用: 1]

XIANG Feifei, CHEN Xuejun, SUN Huagang, et al.

Simulation for effect of internal supported tire blowout on running performance of towed artillery

[J]. Journal of Vibration and Shock, 2014, 33(19): 194-198.

[本文引用: 1]

陈东, 石能芳, 武楠.

爆胎车辆轮胎垂直载荷的控制

[J]. 华南理工大学学报(自然科学版), 2013, 41(11): 114-119.

[本文引用: 1]

CHEN Dong, SHI Nengfang, WU Nan.

Vertical load control of tires for vehicle with tire burst

[J]. Journal of South China University of Technology (Na-tural Science Edition), 2013, 41(11): 114-119.

[本文引用: 1]

臧利国, 王星宇, 赵又群, .

内支撑安全轮胎零压工况力学特性

[J]. 农业工程学报, 2020, 36(15): 80-86.

[本文引用: 1]

ZANG Liguo, WANG Xingyu, ZHAO Youqun, et al.

Mechanical characteristics of inserts supporting Run-flat tire under zero-pressure conditions

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 80-86.

[本文引用: 1]

BAE J J, YOU Y, SUH J B, et al.

Calculation of the structural stiffness of Run-flat and regular tires by considering strain energy

[J]. International Journal of Automotive Technology, 2019, 20(5): 979-987.

DOI:10.1007/s12239-019-0092-x      [本文引用: 1]

卢荡, 卢磊, 吴海东, .

磨损对轮胎侧偏刚度和回正刚度影响的研究

[J]. 机械工程学报, 2020, 56(12): 174-183.

DOI:10.3901/JME.2020.12.174      [本文引用: 1]

基于轮胎六分力测试结果,研究不同磨损状态下轮胎的侧偏力学特性,得出轮胎侧偏特征参数随着轮胎磨损量的变化规律。通过建立胎面磨损模型阐明轮胎磨损特性变化的机理,得到胎面刚度与磨损量的表达式,之后根据该表达式和考虑轮胎磨损状态的轮胎刷子模型,建立考虑胎面磨损的轮胎复杂刷子模型。通过模型推导得到磨损量与轮胎侧偏刚度、回正刚度的关系,以该关系为UniTire轮胎模型的建模基础表达公式,建立考虑磨损的UniTire侧偏模型。为验证模型的正确性,采用3种磨损状态的侧偏数据进行参数拟合,得到考虑磨损的UniTire侧偏模型,并预测其他2种磨损状态下的轮胎侧偏特性。预测模型的仿真结果与试验结果之间的误差较小,有效证明了考虑磨损的UniTire侧偏模型的预测能力。本研究有助于完善UniTire轮胎模型,为UniTire模型室内外扩展应用提供理论和技术支持。

LU Dang, LU Lei, WU Haidong, et al.

Study on influence of wear on tire cornering stiffness and aligning stiffness

[J]. Journal of Mechanical Engineering, 2020, 56(12): 174-183.

DOI:10.3901/JME.2020.12.174      [本文引用: 1]

Based on the results of tire handling test of tires, the cornering properties of the tire under different wear conditions are studied, and the variation law of the tire lateral deflection characteristic parameters with the tire wear amount is obtained. By establishing a tread wear model to clarify the mechanism of tire wear characteristics change, the expression of tread stiffness, aligning stiffness and wear amount is obtained. Then, based on the expression and the tire brush model considering the tire wear state, a complex brush model of the tire considering the tread wear is established. The relationship between the wear amount and the tire cornering stiffness is obtained by the model derivation. The relationship is used as the basic expression formula of UniTire modeling to establish the UniTire cornering model considering the tread wear. In order to verify the correctness of the model, three kinds of wear state cornering slip data are used to fit, and the UniTire cornering model considering wear is obtained, the tire cornering properties in the other two wear states is predicted. The error between the simulation results of the prediction model and the experimental results is small, which effectively proves the predictive ability of the UniTire cornering model considering wear. The UniTire tire model helps provide theoretical and technical support for the UniTire model indoor and outdoor expansion applications.

李勇, 左曙光, 杨宪武, .

轮胎多边形磨损的发生机理及其影响因素分析

[J]. 振动与冲击, 2011, 30(9): 6-9.

[本文引用: 1]

LI Yong, ZUO Shuguang, YANG Xianwu, et al.

Analysis on generation mechanism and impact factors of polygonal wear of tire

[J]. Journal of Vibration and Shock, 2011, 30(9): 6-9.

[本文引用: 1]

郑宏宇, 宗长富, 刘海贞.

汽车爆胎特性建模与主动制动控制策略

[J]. 中国公路学报, 2012, 25(4): 147-152.

[本文引用: 1]

为了提高汽车在突发爆胎事故时的稳定性,对爆胎汽车主动制动控制策略进行了研究。根据车轮爆胎时间与压力变化的关系,在UniTire模型基础上建立了爆胎模型;根据电子稳定性控制系统中横摆角速度及质心侧偏角对汽车稳定性影响的关系,基于二自由度汽车动力学模型,通过计算汽车横摆角速度及质心侧偏角实际值与理想值的偏差,并基于线性二次型调节器最优控制方法决策出最优附加横摆力矩,从而修正爆胎后汽车的运动状态。最后通过计算机仿真对所提策略的有效性进行了验证。结果表明:主动制动控制策略可以保证爆胎过程中汽车的行驶稳定性和安全性。

ZHENG Hongyu, ZONG Changfu, LIU Haizhen.

Tire blow-out modelling and active braking control algorithm of vehicle

[J]. China Journal of Highway and Transport, 2012, 25(4): 147-152.

[本文引用: 1]

In order to avoid serious traffic accident caused by tire blow-out, an active braking control algorithm was studied to improve vehicle stability and safety. Considering the time of blow-out and pressure change of tire, a tire blow-out model was built based on UniTire model. The effects of yaw rate and side-slip angle on vehicle electric stability control systems were referred and the two-degree of freedom vehicle dynamic reference model was built. The difference between the ideal values and the actual values of yaw rate and side-slip angle was computed and the tire blow-out vehicle motion states were modified by the optimal yaw moment which was calculated with linear quadratic regulator. The computer simulation test results show that the active braking control algorithm can improve vehicle stability and safety.

LIU H Z, DENG W W, ZONG C F, et al.

Development of active control strategy for flat tire vehicles

[J]. SAE Technical Papers, 2014, 1(6): 417-429.

[本文引用: 1]

王菲, 刘柏楠, 郭洪艳, .

爆胎汽车的轨迹跟踪与稳定性控制

[J]. 电机与控制学报, 2013, 17(11): 97-104.

[本文引用: 1]

WANG Fei, LIU Bainan, GUO Hongyan, et al.

Trajectory tracking and stability control for vehicle after tire blow-out

[J]. Electric Machines and Control, 2013, 17(11): 97-104.

[本文引用: 1]

董志圣, 田国富, 王涛, .

基于TruckSim的重型清障车操纵稳定性分析

[J]. 交通节能与环保, 2019, 15(2): 21-25.

[本文引用: 1]

DONG Zhisheng, TIAN Guofu, WANG Tao, et al.

Manipulation stability analysis of heavy-duty wrecker based on TruckSim

[J]. Energy Conservation & Environmental Protection in Transportation, 2019, 15(2): 21-25.

[本文引用: 1]

/