Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Multi-Energy Flow Modeling and Optimization of Electric-Gas-Thermal Integrated Energy System
    LI Bingjie, YUAN Xiaoyun, SHI Jing, XU Huachi, LUO Zixuan
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1297-1308.   DOI: 10.16183/j.cnki.jsjtu.2022.494
    Abstract3294)   HTML31)    PDF(pc) (8902KB)(402)       Save

    In view of the fact that the conversion of various energy forms such as electricity, gas, and heat in the regional integrated energy system (RIES) seriously affects the economy of the system operation, a mathematical model and an optimization model of RIES energy flow are established to improve the economy of the system and the absorption of renewable energy. First, the mathematical models of all kinds of energy conversion equipment in the system are established to determine the constraints of three kinds of energy transmission networks, namely electricity, natural gas, and heat. Then, taking economic operation as the primary objective, and taking into account the objective function of low carbon emissions and increasing the uptake rate of renewable energy, the RIES multi-energy flow optimization model is constructed. Finally, based on the large-scale integrated energy system, the load side demand response is introduced and the simulation model is established. The simulation results show that the introduction of demand response improves the flexibility of system scheduling, reduces the dependence of the system on energy storage equipment, and effectively reduces the energy consumption cost of users.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Optimal Allocation of Electric-Thermal Hybrid Energy Storage for Seaport Integrated Energy System Considering Carbon Trading Mechanism
    LIN Sen, WEN Shuli, ZHU Miao, DAI Qun, YAN Lun, ZHAO Yao, YE Huili
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1344-1356.   DOI: 10.16183/j.cnki.jsjtu.2022.428
    Abstract2749)   HTML6)    PDF(pc) (5125KB)(388)       Save

    With the continuous increase of electrification in seaports, the single energy supply mode of seaport microgrid is evolving towards multi-energy integration. Aimed to achieve the goals of peak carbon and carbon neutrality, an optimal carbon trading mechanism-based allocation scheme of hybrid electric and thermal storage system is proposed to further maximize the economic and environmental benefits. First, the integrated energy system model of a seaport is established, incorporating a scheme within the carbon trading market. Then, a bi-level optimization framework is proposed, in which the upper layer is utilized to optimize the allocation of the hybrid energy storage system and the lower layer is employed to optimize the operation. Afterwards, a combination algorithm of the mesh adaptive direct search and the adaptive chaotic particle swarm optimization is developed to solve the proposed problem. Finally, the real-world data of Tianjing port is utilized to verify the method. The numerical results demonstrate that with the help of the proposed method, both the cost and carbon emissions are dramatically reduced.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Optimal Reconfiguration Method for Thermoelectric Power Array Based on Artificial Bee Colony Algorithm
    YANG Bo, HU Yuanweiji, GUO Zhengxun, SHU Hongchun, CAO Pulin, LI Zilin
    Journal of Shanghai Jiao Tong University    2024, 58 (1): 111-126.   DOI: 10.16183/j.cnki.jsjtu.2022.284
    Abstract2607)   HTML14)    PDF(pc) (9997KB)(180)       Save

    With the rapid development of new energy generation technology, the thermoelectric generation technology (TEG) can make good use of the waste heat generated in new energy generation. However, the change of temperature distribution will worsen the output characteristics and reduce the power generation efficiency of the TEG system. In this paper, a TEG array reconfiguration method based on the artificial bee colony (ABC) algorithm is proposed. In three different temperature distributions, ABC is used for dynamic reconfiguration of symmetric 9×9 and unsymmetric 10×15 TEG arrays. Three meta-heuristic algorithms, the genetic algorithm, the particle swarm optimization algorithm, and the bald eagle search are compared with the proposed method, and the temperature distribution of the TEG array reconfiguration by ABC is given. The results show that ABC can improve the output power of the TEG array, and the output power-voltage curves tend to show a single peak value. In addition, real-time hardware-in-the-loop (HIL) experiment based on the RTLAB platform is undertaken to verify the implementation feasibility.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Two-Stage Day-Ahead and Intra-Day Rolling Optimization Scheduling of Container Integrated Port Energy System
    ZHOU Siyi, YANG Huanhong, HUANG Wentao, ZHOU Ze, JIAO Wei, YANG Zhenyu
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1357-1369.   DOI: 10.16183/j.cnki.jsjtu.2023.016
    Abstract2358)   HTML6)    PDF(pc) (7518KB)(328)       Save

    In view of the fact that the current integrated port energy system (IPES) considers neither the time scale difference of refrigerated containers in port scheduling nor the impact of renewable energy and load uncertainty, this paper proposes a day-ahead and intra-day two-stage rolling optimization scheduling method for a container IPES. In day-ahead scheduling, based on the temperature rise process of refrigerated containers, a port cold chain energy demand model is established, which is combined with the logistics process after the arrival of refrigerated containers. Then, the day-ahead output values of each unit in the system are obtained with the goal of the lowest operating cost. In intra-day scheduling, a two-layer rolling model is proposed to obtain the adjusted output of the port energy equipment, which considers the prediction error of shore power load and renewable energy as well as the different response speeds of cooling, heating and power. The calculation results show that the collaborative optimization scheduling of refrigerated containers and the container IPES can effectively reduce the port operation cost and carbon emissions. The two-stage day-ahead and intra-day rolling optimization scheduling can improve the economy and stability of the system.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Switching Modeling and Application in Fault Diagnosis Algorithm Testing of Distribution Network
    XUE Guiting, LIU Zhe, HAN Zhaoru, SHI Fang, WANG Ti, WANG Xiao
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1381-1389.   DOI: 10.16183/j.cnki.jsjtu.2023.129
    Abstract2311)   HTML4)    PDF(pc) (4150KB)(104)       Save

    Fault diagnosis in power distribution networks is crucial for fault location, enhancement of fault processing efficiency, and reduction of power outage losses. Currently, the impact of switch operations and other interferences is seldomly considered in fault diagnosis algorithm designing and testing, which may lead to frequent mal-function and poor performance in practical applications. In this paper, a detailed analysis and modeling of the transient process of switch operation in distribution networks is proposed with the combination of the Mayr and the Helmer models. The transient waveform of the on-site operation process is compared and analyzed with the simulation waveforms generated in PSCAD. Based on the accuracy verification of the model, typical fault scenarios in distribution networks, including switch operation processes, are constructed for fault diagnosis algorithm tests. Compared to the traditional model, the model proposed can simulate and generate disturbance data close to the on-site switch operation process for reliability testing of fault diagnosis algorithms. Finally, several suggestions for optimizing the fault diagnosis algorithm and testing process are proposed through result analysis.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Low-Carbon Operation Strategy of Integrated Energy System Based on User Classification
    ZHANG Chunyan, DOU Zhenlan, BAI Bingqing, WANG Lingling, JIANG Chuanwen, XIONG Zhan
    Journal of Shanghai Jiao Tong University    2024, 58 (1): 1-10.   DOI: 10.16183/j.cnki.jsjtu.2022.321
    Abstract2311)   HTML41)    PDF(pc) (1783KB)(401)       Save

    Integrated energy system (IES) is an important means to achieve the goal of “carbon peaking and carbon neutrality”. However, different types of users in the system have different energy consumption behaviors, which makes the coordinated optimization and low-carbon operation of the integrated energy system more difficult. In order to give full play to the subjective initiative of users, the user behavior of the integrated energy system is modelled based on user behavior analysis, and users are classified into aggressive and conservative types by convolutional neural network (CNN). Then, the decision model of integrated energy system operator is constructed to determine the supply mode of electric heating energy, and the corresponding energy package is designed for different types of users. Finally, the effectiveness of the above models and methods is analyzed based on actual data, and the value of user classification in low-carbon operation of integrated energy systems is verified.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Improved Transformer-PSO Short-Term Electricity Price Prediction Method Considering Multidimensional Influencing Factors
    SUN Xin, WANG Simin, XIE Jingdong, JIANG Hailin, WANG Sen
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1420-1431.   DOI: 10.16183/j.cnki.jsjtu.2023.065
    Abstract2273)   HTML12)    PDF(pc) (3027KB)(343)       Save

    With the construction of a diversified electricity market, the factors affecting electricity prices are gradually increasing, and the market environment has undergone more drastic changes. In order to improve the accuracy of short-term electricity price prediction, an improved Transformer-particle swarm optimization (PSO) short-term electricity price prediction method considering multiple factors affecting electricity prices is proposed. First, based on the consideration of historical electricity prices and historical loads, the relevant factors of electricity price formation are further analyzed. The autocorrelation function is used to analyze the multi-cycle characteristics of electricity price and adjust input sequence, which overcomes the problem of limited prediction accuracy caused by using historical data only and adjusting the input sequence by experience. Then, by combining long short-term memory (LSTM), self-attention mechanism, multi-layer attention mechanism, and adopting a multi-input structure, an improved Transformer model is established to further enhance the ability of the LSTM model to capture long short-term dependencies between different time step information, to overcome the information utilization bottleneck of LSTM, and to adapt to complex multiple sequence inputs including historical electricity prices and various electricity price causes. In addition, the PSO intelligent algorithm is utilized to search for the optimal learning rate of the model at different learning stages, overcoming the limitations of manually adjusting the learning rate. Finally, the PJM market electricity price is used for example analysis. The results show that the proposed short-term electricity price prediction model can be applied to the market environment where electricity prices are affected by various factors and drastic changes, and effectively improve the accuracy of short-term electricity price prediction.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Dispatching Method of Combined Wind-Storage System for Multi-Time Scale Scenarios Application in Electricity Markets
    YIN Gaowen, SHEN Feifan, HUANG Sheng, WEI Juan, QU Yinpeng, WANG Pengda
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1410-1419.   DOI: 10.16183/j.cnki.jsjtu.2022.493
    Abstract2258)   HTML12)    PDF(pc) (2736KB)(278)       Save

    Aimed at the coupling problem of the combined wind-storage system participating in different call time scale scenarios in electricity markets, an optimal dispatching method of the combined wind-storage system oriented to the application of multi-time scale scenarios in electricity markets is proposed to guide the combined wind-storage system to suppress short-term wind power fluctuation, and participate in the electric energy market and the reserve ancillary service market, so as to realize the collaborative optimization among different call time scale scenarios application and maximize the economic benefits of the combined wind-storage system. First, considering the profit mechanism of different scenarios, the objective function is established with the objective of maximizing the economic benefits of multiple scenarios of the combined wind-storage system. Then, the constraints of the combined wind-storage system participating in various application scenarios and multi call time scale coupling constraints are established. Finally, the numerical simulation verifies that the proposed method can improve the comprehensive operation profit of the combined wind-storage system in the day-ahead electric energy market and the reserve ancillary service market while ensuring that the wind power fluctuation does not exceed the limit.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    A Method for Carbon Emission Measurement and a Carbon Reduction Path of Urban Power Sector
    HU Zhuangli, LUO Yichu, CAI Hang
    Journal of Shanghai Jiao Tong University    2024, 58 (1): 82-90.   DOI: 10.16183/j.cnki.jsjtu.2022.222
    Abstract2169)   HTML11)    PDF(pc) (1670KB)(361)       Save

    To measure and reduce carbon emissions in the urban power sector, a method for measuring carbon emissions in the urban power sector and a carbon reduction path are proposed. First, a carbon emission measurement model for the urban power sector is established based on the data of local power generation and net inward power. Then, carbon reduction measures for the urban power sector are proposed from the generation side, grid side, load side and energy storage side. After that, an evaluation model for the effect of the carbon reduction measures is established. Finally, taking a typical city F in the Pearl River Delta as an example, the proposed carbon emission calculation model is used to calculate the carbon emissions of power sector of the city, and the effectiveness of carbon reduction in 2030 carbon peak scenario of the city is evaluated based on the carbon reduction measures. The results show that the proposed model can accurately measure the carbon emissions of the urban power sector, and by utilizing carbon reduction measures, carbon emissions of the city can be reduced by at least 10.6 million tons in 2030.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Cited: CSCD(1)
    Improved Magnetic Circuit-Motion Coupled Model and Fast Simulation of Direct-Acting Electromechanical Motion Device
    JIANG Peng, GUAN Zhenqun, ZHAO Guozhong, ZHANG Qun, QIN Zhiqiang
    Journal of Shanghai Jiao Tong University    2024, 58 (1): 102-110.   DOI: 10.16183/j.cnki.jsjtu.2022.243
    Abstract2147)   HTML4)    PDF(pc) (3985KB)(279)       Save

    The rapid simulation of the dynamic performance of electromechanical devices such as solenoid valves and relays is important for product development and design. A magnetic circuit model of the non-saturated direct-acting electromechanical motion device is improved, and then coupled with the motion equation of the mechanism to realize the rapid simulation of the electromechanical motion device. In contrast to the ideal magnetic resistance in the conventional magnetic circuit model, the non-saturated total magnetic resistance is expressed by a cubic polynomial of the movement displacement of mechanism. The four undetermined coefficients of the polynomial are calibrated by the simulation values of static magnetic force and inductance at the upper and lower motion limits. The improved magnetic circuit model can more accurately predict the changes of magnetic attraction force and inductance with the motion displacement. Furthermore, coupled with the motion equation of the electromechanical motion device, the improved model establishes an improved magnetic circuit-motion coupled model and realizes fast second-level simulation of an electromagnetic brake and valve in the Simulink system, which can greatly reduce the finite element simulation time while maintaining simulation accuracy.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Hydrodynamic Performance of a Barge-Type Floating Offshore Wind Turbine with Moonpool
    CHEN Yiren, YAO Jinyu, LI Mingxuan, ZHANG Xinshu
    Journal of Shanghai Jiao Tong University    2024, 58 (7): 965-982.   DOI: 10.16183/j.cnki.jsjtu.2022.521
    Abstract2122)   HTML12)    PDF(pc) (11548KB)(466)       Save

    The hydrodynamic performance of a barge-type floating offshore wind turbine (FOWT) with a moonpool is studied in frequency domain with reference to the Ideol-Floatgen design. The correction of the viscous damping of the moonpool is considered. First, the resonance modes of the moonpool are analyzed. Then, the hydrodynamic coefficients of the FOWT under regular waves and the motion responses under irregular waves are investigated. Finally, the safety of the FOWT is verified with respect to the DNV standards. The results show that the dynamic pitch and nacelle acceleration of the barge-type FOWT meet the safety requirements under both operating and survival conditions. The investigation of the coupling effects of the platform motion and the moonpool resonance shows that the motion of the platform will cause the shift of the piston mode frequency of the moonpool and the reduction of the piston mode response amplitude, the frequency of the sloshing mode is basically unaffected, but the response amplitude of the first-order sloshing mode is increased. The motion responses of the barge-type FOWT with and without the moonpool are compared. It is found that the moonpool can reduce the motion response of the FOWT, and improve the overall hydrodynamic performance of the FOWT. The platform length, moonpool length and platform draught are parametrically analyzed. Surge, heave, pitch response RMS values and the nacelle acceleration response RMS value are used as the indicators of comparison. It is found that the increase of the platform length could effectively reduce the four response RMS values of the FOWT under both operating and survival conditions, the increase of the moonpool length will reduce the four response RMS values of the FOWT under the operating condition, and the increase of the platform draught could significantly reduce the four response RMS values of the FOWT under the survival condition, the heave and pitch response RMS values increase with the augmentation of the draught under the operating condition.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Joint Economic Optimization of AGV Logistics Scheduling and Orderly Charging in a Low-Carbon Automated Terminal
    WANG Xuan, WANG Bao, CHEN Yanping, LIU Hong, MA Xiaohui
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1370-1380.   DOI: 10.16183/j.cnki.jsjtu.2023.027
    Abstract2050)   HTML8)    PDF(pc) (3702KB)(553)       Save

    To improve the current automated guided vehicle (AGV) charging strategy at automated terminals, which is not fully coordinated with the distributed power supply, a joint optimization method of AGV logistics scheduling and orderly charging is proposed. First, the synergetic relationship between AGV logistics scheduling and charging scheduling is analyzed, and a joint optimization framework is built. Then, a method to calculate the distance traveled by AGVs while considering the segregation requirements of trucks inside and outside the terminal is proposed. Afterwards, for the AGV charging module, the judgment conditions of AGV charging status and the pile selection method are defined. Furthermore, to minimize the cost of purchasing electricity at the terminal, a joint optimization model of logistics scheduling and orderly charging is constructed by considering time-of-use tariff, distributed power feed-in tariff, power balance constraint, state of charge constraint at the termination moment, upper and lower bound constraints of decision variables, and logistics scheduling constraint. Finally, a fast solution method based on improved particle swarm optimization algorithm is proposed, of which the effectiveness and economic efficiency are verified by an actual case of a terminal.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Review of High Voltage Ride-Through Control Method of Large-Scale Wind Farm
    WEI Juan, LI Canbing, HUANG Sheng, CHEN Sijie, GE Rui, SHEN Feifan, WEI Lai
    Journal of Shanghai Jiao Tong University    2024, 58 (6): 783-797.   DOI: 10.16183/j.cnki.jsjtu.2022.416
    Abstract2021)   HTML16)    PDF(pc) (1884KB)(471)       Save

    As the major demand for the development and utilization of new energy, the large-scale development of wind power is a key support in achieving the strategic goal of “cabron peaking and carbon neutrality” for China. The problem of safe and stable operation of wind farms caused by external grid faults has become one of the key bottlenecks restricting the large-scale, clustered, and intelligent development of wind power. This paper mainly focuses on the voltage surge condition of the power grid. First, it analyzes the transient characteristics of high voltage ride-through (HVRT) of the doubly-fed induction generator-wind turbine, permanent magnet synchronous generator-wind turbine, and wind farms. Then, it summarizes the corresponding HVRT and post-fault voltage recovery coordinated optimal control strategies based on the different control areas, and it classifies and compares the working principles and advantages and disadvantages of various control strategies. Afterwards, it recapitulates the principle, advantages and disadvantages, and effects of the existing HVRT control method for large-scale wind farms, and analyzes the differences between the single wind turbine and the large-scale wind farms from the perspective of control structure. Finally, it discusses the development trend and potential research hotspots of wind farm voltage intelligent safety control in the future, aiming to provide reference for improving the large-scale application of wind power and the safe operation of power grids in China.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Robust Evaluation Method of Integrated Energy System Based on Variable Step Simulation and Improved Entropy Weight Method
    FAN Hong, HE Jie, TIAN Shuxin
    Journal of Shanghai Jiao Tong University    2024, 58 (1): 59-68.   DOI: 10.16183/j.cnki.jsjtu.2022.186
    Abstract2004)   HTML11)    PDF(pc) (5076KB)(255)       Save

    As an important manifestation of the energy Internet, the integrated energy system improves the energy utilization rate. However, it also brings more risks due to the high coupling and the large difference in the response speed between the various systems. From the perspective of system security, it becomes crucial to accurately identify the weak links in the system and evaluate the robustness of the system. Therefore, a robustness evaluation method combining variable step size simulation and improved entropy weight method is proposed in the complex network environment. First, the structure of the integrated energy system is introduced and the coupling links of the system are further explained. Then, the robustness indicators including network damage degree and connectivity factor are proposed, and a variable step according to the difference of the response time of different systems is adopted. Based on the simulation results, an improved entropy weight method is proposed, and a more objective evaluation method is constructed. Finally, the superiority of the evaluation method is verified by a case study.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Degaussing Coil Deployment and Degaussing Current Optimization Strategy for Ship Partition Based on Tilted Correlation Screening
    TIAN Ye, YU Moduo, HUANG Wentao, TAI Nengling, NIU Lu
    Journal of Shanghai Jiao Tong University    2024, 58 (7): 1018-1026.   DOI: 10.16183/j.cnki.jsjtu.2022.417
    Abstract1995)   HTML5)    PDF(pc) (3102KB)(288)       Save

    In modern ship degaussing systems, degaussing windings are mainly distributed based on the shape of ship bulkhead, which is difficult to ensure the degaussing effect of magnetic induction intensity of unit winding of each degaussing winding. In order to solve this problem, this paper introduces a tilted correlation screening in high-dimensional variable filter, which splits and recombines the original coils, and re-divides the original degaussing sections, so as to improve the degaussing efficiency of each coil. Aiming at the problem of sparse parameter vectors and multiple collinearity in the calculation of degaussing current after winding restructuring, this paper proposes a slant correlation screening and partial ridge regression algorithm. Through simulation, when the threshold is 0.73 and 0.91, the algorithm reduces 10.08% and 17.59% respectively compared with the least square method, while the residual root mean square error decreases by 10.45% and 12.17%. The simulation results show that the degaussing effect is significantly improved after the algorithm is adopted.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    PG-MACO Optimization Method for Ship Pipeline Layout
    LIN Yan, JIN Tingyu, YANG Yuchao
    Journal of Shanghai Jiao Tong University    2024, 58 (7): 1027-1035.   DOI: 10.16183/j.cnki.jsjtu.2022.508
    Abstract1986)   HTML7)    PDF(pc) (3432KB)(163)       Save

    Aimed at the problem of low efficiency of ship pipeline design, an optimization method of pipeline layout is proposed. An optimization mathematical model is established by comprehensively considering the engineering background of safety, economy, coordination and operability, and the defects of ant colony optimization algorithm in dealing with mixed pipeline layout conditions are improved. A spatial state transition strategy for optimizing feasible solution search, a pheromone diffusion mechanism for improving pheromone inspiration effect and accelerating algorithm convergence are proposed, and a multi-ant colony co-evolution mechanism is designed for mixed pipeline layout conditions. Based on the secondary development technology, the application of this method in the third-party design software is realized, and verified by a nuclear primary pipeline layout project. The results show that the pheromone Gaussian diffusion multi ant colony optimization (PG-MACO) algorithm has a better performance and layout effect than the traditional ant colony algorithm. The routing efficiency is improved by 58.38%, the convergence algebra is shortened by 43.24%, the pipeline length is shortened by 33.88%, and the number of pipeline bends is reduced by 41.67%, which verifies the effectiveness and engineering practicability of the proposed method.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Refined Simulation of Near-Surface Wind Field of Atmospheric Boundary Layer Based on WRF-LES Model
    LIU Dalin, TAO Tao, CAO Yong, ZHOU Dai, HAN Zhaolong
    Journal of Shanghai Jiao Tong University    2024, 58 (2): 220-231.   DOI: 10.16183/j.cnki.jsjtu.2022.415
    Abstract1983)   HTML42)    PDF(pc) (9950KB)(606)       Save

    Extreme meteorological disasters such as typhoons pose a serious threat to the safety of engineering structures. Therefore, the refined simulation on the near-surface atmospheric boundary layer (ABL) is valuable for civil engineering. Large-eddy simulation (LES) implemented in the weather research and forecating (WRF) model has the advantages of multiple options of numerical schemes and high accuracy. It is generally suitable for the refined simulation of the near-surface wind field, although the performance of simulation results is closely related to the numerical methods. This paper assesses the impacts of vital parameters regarding subfilter-scale (SFS) stress models, mesh size, and spatial difference schemes within WRF-LES to simulate the ideal ABL in order to figure out appropriate numerical schemes for the refined simulation of the near-surface wind field. The wind field characteristics are addressed and analyzed such as mean wind speed profile, turbulence intensity profile, and power of spectrum. Comparisons of simulation results among different SFS stress models indicate that the nonlinear backscatter and anisotropy one (NBA1) SFS stress model can effectively improve the accuracy of simulation in the near-surface wind profiles. Investigations of mesh resolution effects indicate that the nonuniformly refined vertical grid near the surface agrees much better with the expected profiles and reduces the expenditure of computational resources. Furthermore, the results show that the even-order spatial difference schemes produce more small-scale turbulent structures than the odd-order difference schemes. The numerical methods of WRF-LES proposed can provide a technical reference for refined simulation of the near-surface wind field and typhoon boundary layer.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Comprehensive Evaluation of Key Technologies in Power Internet of Things Based on Comprehensive Similarity of Cloud Model
    CHEN Lianfu, ZHONG Haiwang, TAN Zhenfei, RUAN Guangchun
    Journal of Shanghai Jiao Tong University    2024, 58 (1): 19-29.   DOI: 10.16183/j.cnki.jsjtu.2022.420
    Abstract1965)   HTML16)    PDF(pc) (1954KB)(166)       Save

    Currently, the comprehensive evaluation of the application of key technologies in the power Internet of Things (PIoT) has the characteristics of a single evaluation object, and the traditional evaluation methods are not applicable. In order to comprehensively evaluate the technology maturity and operational effectiveness of PIoT projects, a comprehensive evaluation index for key technologies in PIoT is established to comprehensively consider the different development stages. According to the characteristics of application scenario, an evaluation model based on the comprehensive similarity of cloud model is proposed. By reforming the technique for order preference by similarity to an ideal solution (TOPSIS) method, a decision matrix for a single evaluation object is constructed, and the shape-distance comprehensive similarity of the cloud model is used as a measure to characterize the relative closeness of the TOPSIS method, and the accurate evaluation of a single object is realized. Finally, the proposed method is applied to assess a PIoT demonstration project. The results show that the proposed comprehensive evaluation index and evaluation method can objectively and comprehensively evaluate the comprehensive application effect of each key technology in the construction and operation stages of PIoT.

    Table and Figures | Reference | Supplementary Material | Related Articles | Metrics | Comments0
    Cited: CSCD(1)
    Reliability Index Calculation and Reserve Capacity Optimization Considering Multiple Uncertainties
    YE Lun, OUYANG Xu, YAO Jiangang, YANG Shengjie, YIN Jungang
    Journal of Shanghai Jiao Tong University    2024, 58 (1): 30-39.   DOI: 10.16183/j.cnki.jsjtu.2022.366
    Abstract1938)   HTML9)    PDF(pc) (1413KB)(217)       Save

    In power systems with a high proportion of renewable energy, to achieve coordinated optimal scheduling of source and load considering multiple uncertainties is an important issue in power system operation. Therefore, a probabilistic spinning reserve optimization model based on multiple scenarios is constructed. Multiple uncertain factors are considered in the model, such as wind power and solar power forecast errors, load forecast error and unscheduled generator outage. Renewable energy curtailment and load shedding are used as special reserve resources in the day-ahead security-constrained unit commitment (SCUC) to improve the economic operation efficiency. The calculations of reliability indexes, expected energy not served and expected energy curtailment, are simplified, and the inequality constraints related to these two indexes are reduced, which improves the computational performance of the model. The model optimizes the total expected cost considering multiple uncertainties. Case studies based on the IEEE-RTS demonstrate the effectiveness of the proposed model. The numerical results show that the improved calculation method of reliability indexes can effectively reduce the solution time of the SCUC model. The reserve optimization model can realize the dynamic allocation of the spinning reserve capacity of the system and improve economic operation of the system.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Robust Optimal Scheduling of Micro Energy Grid Considering Multi-Interval Uncertainty Set of Source-Load and Integrated Demand Response
    MI Yang, FU Qixin, ZHAO Haihui, MA Siyuan, WANG Yufei
    Journal of Shanghai Jiao Tong University    2024, 58 (9): 1323-1333.   DOI: 10.16183/j.cnki.jsjtu.2023.022
    Abstract1921)   HTML6)    PDF(pc) (1898KB)(175)       Save

    Aiming at the uncertainty of the source and load in micro energy grid, a robust optimal scheduling model considering multi-interval uncertainty set of source-load and integrated demand response is proposed. First, considering the uncertainty of wind power, photovoltaic output and electric, and thermal and cooling loads in the micro energy grid, a multi-interval uncertainty set of source-load is established. Then, in order to fully tap the potential of load side dispatching, an integrated demand response model is established, which includes reducible electric load, transferable electric load, flexible cooling, heating load, and replaceable load, based on which, the uncertainty of integrated demand response is considered. Afterwards, with the lowest dispatching cost of micro energy grid as the objective function, a two-stage robust optimal scheduling model of micro energy network is constructed, which considers the multi-interval uncertainty set of source load and the integrated demand response. The model is solved by the column and constraint generation algorithm, the strong duality theory, and the large M method. Finally, the rationality and effectiveness of the proposed model are verified through the analysis of numerical examples.

    Table and Figures | Reference | Related Articles | Metrics | Comments0