Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (7): 983-994.doi: 10.16183/j.cnki.jsjtu.2023.019
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
ZENG Weijie1, ZHANG Ying2(), DENG Yanfei3, GUO Chuanrui1, REN Weixin1
Received:
2023-01-16
Revised:
2023-03-07
Accepted:
2023-03-14
Online:
2024-07-28
Published:
2024-07-26
CLC Number:
ZENG Weijie, ZHANG Ying, DENG Yanfei, GUO Chuanrui, REN Weixin. Vibration Control of Semi-Submersible Offshore Wind Turbines Using Inerter-Based Absorbers[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 983-994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.019
Tab.1
Model parameters of semi-submersible offshore wind turbine[20-21]
参数 | 取值 |
---|---|
功率/MW | 5 |
风轮,轮毂直径/m | 126, 3 |
切入、额定、切出风速/(m·s-1) | 3, 11.4, 25 |
机舱尺寸/(m×m×m) | 18× 6 × 6 |
风轮质量/kg | 110 000 |
机舱质量/kg | 240 000 |
风塔质量/kg | 347 460 |
风塔惯性矩/(kg·m2) | 2.721 8×109 |
塔基(浮台顶部)标高/m | 10 |
风力机塔顶标高/m | 87.6 |
浮台吃水深度/m | 20 |
平台质量(包括压载物)/kg | 1.347 3×107 |
浮台质心位置(基于海平面)/m | -13.46 |
Tab.4
Optimization results of TMD parameters
类别 | m/t | k/ (kN·m-1) | c/[(kN· (m·s-1)-1] | J1 | J1提升 比例/% | J2 | J2提升 比例/% | ||
---|---|---|---|---|---|---|---|---|---|
无TMD | 有TMD | 无TMD | 有TMD | ||||||
NTMD | 20 | 135 116 | 10 578 | 0.470 | 0.191 | 59.6 | 8.730 | 8.775 | -0.5 |
20 | 1 150 | 1 074 | 0.470 | 0.455 | 3.20 | 8.730 | 3.919 | 55.1 | |
PTMD | 200 | 1 434 100 | 8 899 | 0.470 | 0.411 | 12.8 | 8.730 | 8.656 | 0.8 |
200 | 12 100 | 17 900 | 0.470 | 0.465 | 1.10 | 8.730 | 2.772 | 68.0 | |
2TMD | 20 | 139 200 | 13 700 | 0.470 | 0.187 | 60.2 | 8.730 | 2.702 | 69.1 |
200 | 11 200 | 18 300 |
Tab.7
Standard deviation and maximum value of tower base bending moment
工况 | 塔底前后弯矩最大值/(kN·m) | 塔底侧向弯矩最大值/(kN·m) | 塔底前后弯矩标准差/(kN·m) | 塔底侧向弯矩标准差/(kN·m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
无控 | 2TMD | 2IBA | 无控 | 2TMD | 2IBA | 无控 | 2TMD | 2IBA | 无控 | 2TMD | 2IBA | ||||
1 | 70 679 | 65 273 | 64 648 | 13 787 | 8 021 | 7 844 | 10 993 | 9 144 | 8 920 | 3 088 | 1 395 | 1 254 | |||
2 | 99 725 | 101 712 | 101 037 | 13 228 | 12 572 | 12 789 | 12 155 | 12 273 | 12 289 | 2 068 | 1 741 | 1 745 | |||
3 | 88 950 | 94 178 | 94 132 | 16 771 | 14 967 | 14 945 | 12 986 | 13 124 | 13 130 | 2 403 | 2 101 | 2 100 | |||
4 | 87 679 | 93 941 | 93 018 | 21 057 | 18 120 | 18 043 | 13 831 | 14 052 | 14 046 | 3 483 | 2 834 | 2 808 | |||
5 | 114 155 | 115 743 | 113 147 | 53 659 | 43 393 | 41 439 | 20 293 | 20 196 | 20 123 | 12 926 | 9 613 | 9 427 |
Tab.8
Analysis of extreme conditions (Case 5)
分析类型 | 参数 | 无TMD/IBA | 2TMD (抑制率) | 2IBA (抑制率) | ||
---|---|---|---|---|---|---|
时域分析 | 塔顶前后变形位移最大值/m | 0.596 9 | 0.610 3 | (-2.24%) | 0.594 1 | (0.47%) |
塔顶侧向变形位移最大值/m | 0.294 8 | 0.245 8 | (16.62%) | 0.235 3 | (20.18%) | |
塔底前后弯矩最大值/(kN·m) | 114 155 | 115 743 | (-1.39%) | 113 147 | (0.88%) | |
塔底侧向弯矩最大值/(kN·m) | 53 660 | 43 394 | (19.13%) | 41 439 | (22.77%) | |
频域分析 (0.4~0.6 Hz) | 塔顶前后变形位移功率谱密度/(dB·Hz-1) | 0.053 62 | 0.010 96 | (79.56%) | 0.009 112 | (83.01%) |
塔顶侧向变形位移功率谱密度/(dB·Hz-1) | 0.059 61 | 0.014 33 | (75.96%) | 0.011 73 | (80.32%) | |
塔底前后弯矩功率谱密度/(dB·Hz-1) | 1.798×109 | 3.766×108 | (79.05%) | 3.081×108 | (82.86%) | |
塔底侧向弯矩功率谱密度/(dB·Hz-1) | 2.043×109 | 4.897×108 | (76.03%) | 4.028×108 | (80.28%) |
[1] | WILLIAMS R, LEE J, ZHAO F. Global offshore wind report 2022[R]. Brussels, Belgium: GWEC, 2022. |
[2] | WILLIAMS R, LEE J, ZHAO F. Global offshore wind report 2021[R]. Brussels, Belgium: GWEC, 2021. |
[3] | LACKNER M A, ROTEA M A. Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719. |
[4] | STEWART G, LACKNER M. Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1090-1104. |
[5] | SI Y, KARIMI H R, GAO H. Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering Structures, 2014, 69: 168-182. |
[6] | 贺尔铭, 胡亚琪, 张扬. 基于TMD的海上浮动风力机结构振动控制研究[J]. 西北工业大学学报, 2014, 32(1): 55-61. |
HE Erming, HU Yaqi, ZHANG Yang. Structural vibration control of offshore floating wind turbine based on TMD[J]. Journal of Northwestern Polytechnical University, 2014, 32(1): 55-61. | |
[7] | 杨佳佳, 贺尔铭, 胡亚琪. 浮动平台内TMD对Barge式海上浮动风机的振动控制研究[J]. 西北工业大学学报, 2018, 36(2): 238-245. |
YANG Jiajia, HE Erming, HU Yaqi. Vibration mitigation of the barge-type offshore wind turbine with a tuned mass damper on floating platform[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 238-245 | |
[8] | 杨佳佳, 贺尔铭, 姚文旭, 等. 抑制海上浮式风力机振动的TMD限位策略研究[J]. 振动与冲击, 2020, 39(15): 18-24. |
YANG Jiajia, HE Erming, YAO Wenxu, et al. TMD limited position strategy for vibration suppression of floating offshore wind turbines[J]. Journal of Vibration and Shock, 2020, 39(15): 18-24. | |
[9] | YANG J J, HE E M. Coupled modeling and structural vibration control for floating offshore wind turbine[J]. Renewable Energy, 2020, 157: 678-694. |
[10] | GUIMARAES P V B, DE MORAIS M V G, AVILA S M. Tuned mass damper inverted pendulum to reduce offshore wind turbine vibrations[M]//Vibration engineering and technology of machinery. Cham, Switzerland: Springer International Publishing, 2015: 379-388. |
[11] | LI C, ZHUANG T, ZHOU S, et al. Passive vibration control of a semi-submersible floating offshore wind turbine[J]. Applied Sciences, 2017, 7(6): 509-528. |
[12] | ZHANG Z, HØEG C. Dynamics and control of spar-type floating offshore wind turbines with tuned liquid column dampers[J]. Structural Control and Health Monitoring, 2020, 27(6): e2532-e2557. |
[13] | WEI X, ZHAO X. Vibration suppression of a floating hydrostatic wind turbine model using bidirectional tuned liquid column mass damper[J]. Wind Energy, 2020, 23(10): 1887-1904. |
[14] | CHEN M, PAPAGEORGIOU C, SCHEIBE F, et al. The missing mechanical circuit element[J]. IEEE Circuits and Systems Magazine, 2009, 9(1): 10-26. |
[15] | CHEN M Z, HU Y, HUANG L, et al. Influence of inerter on natural frequencies of vibration systems[J]. Journal of Sound and Vibration, 2014, 333(7): 1874-1887. |
[16] | HU Y, CHEN M Z. Performance evaluation for inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences, 2015, 99: 297-307. |
[17] | 莊初立, 五十子幸树, 张永山. 极端地震下惯容器-弹簧-阻尼装置对隔震结构减震效果研究[J]. 振动与冲击, 2019, 38(12): 112-117. |
CHONG Cholap, KOHJU Ikago, ZHANG Yong-shan. Effectiveness of an inerter-spring-damper device in the seismic response control of an isolated structure under extreme earthquakes[J]. Journal of Vibration and Shock, 2019, 38(12): 112-117. | |
[18] | ZHANG Z, HØEG C. Inerter-enhanced tuned mass damper for vibration damping of floating offshore wind turbines[J]. Ocean Engineering, 2021, 223: 108663. |
[19] | LI Y Y, PARK S, JIANG J Z, et al. Vibration suppression for monopile and spar-buoy offshore wind turbines using the structure—Immittance approach[J]. Wind Energy, 2020, 23(10): 1966-1985. |
[20] | ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase II of OC4[R]. Golden, USA: National Renewable Energy Laboratory, 2014. |
[21] | JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado, USA: National Renewable Energy Laboratory, 2009. |
[22] | HU Y L, WANG J N, CHEN M Z Q, et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J]. Engineering Structures, 2018, 177: 198-209. |
[23] | ZHANG S Y, JIANG J Z, NEILD S A. Passive vibration control: A structure-immittance approach[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2017, 473(2201): 20170011. |
[24] | ZHANG S Y, JIANG J Z, NEILD S. Optimal configurations for a linear vibration suppression device in a multi-storey building[J]. Structural Control and Health Monitoring, 2017, 24(3): e1887-e1904. |
[25] | STEWART G M. Load reduction of floating wind turbines using tuned mass dampers[D]. USA: University of Massachusetts Amherst, 2012. |
[26] | LA CAVA W, LACKNER M. Theory manual for the tuned mass damper module in FAST v8[R]. USA: University of Massachusetts Amherst, 2015. |
[27] | TC 88. Wind energy generation systems — Part 1. Design requirements: IEC 61400-1[S]. Geneva, Switzerland: International Electrotechnical Commission, 2019. |
[1] | WEI Hui, CHEN Peng, ZHANG Ruihan, CHENG Zhengshun. Ultra-Short-Term Platform Motion Prediction Method of Large Floating Wind Turbines Based on LSTM Network [J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 37-45. |
[2] | WANG Bin, LI Hong-tao, TANG Guang-yin. Overview of Offshore Floating Wind Turbines [J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 220-225. |
[3] | DENG Lu1,HU Binfen1,WU Songxiong1,HUANG Minxi2,SONG Xiaoping3. Influence of Aerodynamic Load on Fatigue Life of Mooring Lines of Floating Wind Turbines [J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 743-749. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||