In the context of large-scale energy storage stations, such as pumped storage, participating in both spot trading and grid scheduling, it is difficult for the grid to directly access the consumption of renewable energy in the spot market. In this regard, the influence of spot electricity trading on the pumped storage scheduling is considered and a multi-agent scheduling method with an embedded market game model is proposed. First, combined with the power spot market clearing model, with the objective of maximizing the benefits of the pumped storage power station in the spot market, a strategy for the pumped storage power station to participate in the spot trading of electric energy is developed. Then, combined with the two-part electricity price policy, the capacity allocation and power dispatching strategy of the grid operator about the pumped storage is formulated to minimize grid operating costs and the amount of renewable energy discarded in the entire grid. To formulate the proposed scheduling strategy, a bi-level optimization problem with an embedded game model is solved: the decision-making problem of the pumped storage power station participating in the electric energy spot market, and the optimization with the embedded marketing game model of capacity allocation and power scheduling strategy about pumped storage. The decision-making problem of pumped storage in the spot market follows a Stackelberg game model, which is integrated into the optimization problem of pumped storage capacity allocation and power scheduling strategy via the strong dual theory. The embedded bi-objective problem is solved by using the NSGA-II algorithm. Finally, based on the data from a pumped storage power station in East China, a simulation model is built to verify the effectiveness of the proposed method. The test results show that the proposed method can effectively coordinate the decision-making of direct grid dispatching and pumped storage participation in the electric energy spot market, enhancing the economic benefits of pumped storage, reducing the operating cost of the grid, and improving the consumption of renewable energy.