Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (10): 1606-1617.doi: 10.16183/j.cnki.jsjtu.2023.043
• Original article • Previous Articles Next Articles
QIN Jing, WEN Yuanbo(), GAO Tao, LIU Yao
Received:
2023-02-10
Revised:
2023-03-02
Accepted:
2023-03-09
Online:
2024-10-28
Published:
2024-11-01
CLC Number:
QIN Jing, WEN Yuanbo, GAO Tao, LIU Yao. A Transformer-Based Diffusion Model for All-in-One Weather-Degraded Image Restoration[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1606-1617.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.043
Tab.2
Quantitative comparison of different methods in all-in-one weather-degraded image restoration tasks
方法 | 源 | Snow100K-L PSNR/SSIM | Snow100K-M PSNR/SSIM | Snow100K-S PSNR/SSIM | Test1 PSNR/SSIM | Raindrop-A PSNR/SSIM |
---|---|---|---|---|---|---|
Uformer[ | CVPR 2022 | 26.24/0.8680 | 32.11/0.9316 | 34.00/0.9445 | 16.32/0.7565 | 30.33/0.9335 |
Restormer[ | CVPR 2022 | |||||
All-in-One[ | CVPR 2020 | 28.14/0.8901 | 30.96/0.9290 | 32.63/0.9392 | 25.87/ | |
TransWeather[ | CVPR 2022 | 30.21/0.9179 | ||||
AWIR-TDM | 31.69/0.9240 | 35.47/0.9565 | 37.16/0.9642 | 31.68/0.9347 | 32.33/0.9429 |
Tab.3
Quantitative comparison of different methods on Snow100K dataset
方法 | 源 | Snow100K-L PSNR/SSIM | Snow100K-M PSNR/SSIM | Snow100K-S PSNR/SSIM | 平均指标 PSNR/SSIM |
---|---|---|---|---|---|
RESCAN[ | ECCV 2018 | 26.08/0.8108 | 29.95/0.8860 | 31.51/0.9032 | 29.28/0.8667 |
SPANet[ | CVPR 2019 | 23.70/0.7930 | 28.06/0.8680 | 29.92/0.8260 | 27.23/0.8290 |
DesnowNet[ | TIP 2018 | 27.17/ | 30.87/0.9409 | 32.33/0.9500 | 30.12/ |
JSTASR[ | ECCV 2020 | 25.32/0.8076 | 29.11/0.8843 | 31.40/0.9012 | 28.61/0.8644 |
SwinIR[ | CVPR 2021 | 28.18/0.8800 | 31.42/0.9284 | 33.96/ | 31.19/0.9217 |
DDMSNet[ | TIP 2021 | 28.85/0.8772 | 32.89/0.9330 | 34.34/0.9445 | 32.03/0.9182 |
TransWeather[ | CVPR 2022 | ||||
AWIR-TDM | 30.64/0.9193 | 35.26/0.9472 | 37.05/0.9680 | 34.32/0.9448 |
Tab.4
Quantitative comparison of different methods on Test1 dataset
方法 | 源 | Test1 |
---|---|---|
PSNR/SSIM | ||
CycleGAN[ | ICCV 2017 | 17.62/0.6560 |
pix2pix[ | CVPR 2017 | 19.09/0.7100 |
HRGAN[ | CVPR 2019 | 21.56/0.8550 |
SwinIR[ | CVPR 2021 | 23.23/0.8685 |
PCNet[ | TIP 2021 | 26.19/0.9015 |
MPRNet[ | CVPR 2021 | 28.03/0.9192 |
Restormer[ | CVPR 2022 | |
AWIR-TDM | 29.13/0.9428 |
Tab.5
Quantitative comparison of different methods on Raindrop-A dataset
方法 | 源 | Raindrop-A |
---|---|---|
PSNR/SSIM | ||
pix2pix[ | CVPR 2017 | 28.02/0.8547 |
Attn. GAN[ | CVPR 2018 | 31.59/0.9170 |
DuRN[ | CVPR 2019 | 31.24/0.9259 |
RaindropAttn[ | ICCV 2019 | 31.44/0.9263 |
SwinIR[ | CVPR 2021 | 30.82/0.9035 |
CCN[ | CVPR 2021 | 31.34/ |
IDT[ | TPAMI 2022 | |
AWIR-TDM | 32.84/0.9571 |
Tab.6
Quantitative comparison of different methods on natural weather-degraded image dataset
方法 | Snow NIQE/SSEQ/NIMA | RainMist NIQE/SSEQ/NIMA | RainStreak NIQE/SSEQ/NIMA | Raindrop NIQE/SSEQ/NIMA |
---|---|---|---|---|
Uformer[ | 3.395/28.31/2.644 | 4.021/26.88/3.289 | 3.771/27.19/3.376 | 4.792/34.06/4.260 |
Restormer[ | 3.267/27.90/2.570 | 3.912/ | 4.658/ | |
All-in-One[ | 3.561/29.62/2.384 | 4.253/25.20/3.419 | 3.895/27.03/3.352 | |
TransWeather[ | 3.020/ | 3.765/27.11/3.282 | 4.702/31.81/4.213 | |
AWIR-TDM | 3.752/24.23/3.965 | 3.636/ | 4.647/30.46/4.328 |
Tab.7
Ablation experimental results of individual components of noise estimation network
网络模型 | 网络组成 | 单步估计 用时/s | Raindrop-A | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ResBlock | ViT | SA | TSA | STSA | FFN | SGFFN | DGGFFN | PSNR / SSIM | ||
基线网络 | √ | √ | 0.6634 | 29.17/0.9162 | ||||||
ⅰ | √ | √ | √ | 1.0725 | 29.86/0.9203 | |||||
ⅱ | √ | √ | √ | 0.8603 | 31.54/0.9297 | |||||
ⅲ | √ | √ | √ | 0.3961 | 30.49/0.9381 | |||||
ⅳ | √ | √ | √ | 0.4033 | ||||||
AWIR-TDM | √ | √ | √ | 32.33/0.9429 |
[1] |
高涛, 文渊博, 陈婷, 等. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623.
doi: 10.16183/j.cnki.jsjtu.2022.032 |
GAO Tao, WEN Yuanbo, CHEN Ting, et al. A single image deraining algorithm based on Swin Transformer[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 613-623. | |
[2] | 黄鹤, 胡凯益, 李战一, 等. 融合MCAP和GRTV正则化的无人机航拍建筑物图像去雾方法[J]. 上海交通大学学报, 2023, 57(3): 613-623. |
HUANG He, HU Kaiyi, LI Zhanyi, et al. An image dehazing method for UAV aerial photography to buildings combining MCAP and GRTV regularization[J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 613-623. | |
[3] | LI R, ROBBY T T, LOONG-FAH C. All in one bad weather removal using architectural search[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 3175-3185. |
[4] | VALANARASU J M J, YASARLA R, PATEL V M. Transweather: Transformer-based restoration of images degraded by adverse weather conditions[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 2353-2363. |
[5] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
[6] | KINGMA D P, WELLING M. Auto-encoding variational bayes[DB/OL]. (2013-12-20)[2023-02-06]. https://arxiv.org/abs/1312.6114. |
[7] | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851. |
[8] | DHARIWAL P, NICHOL A. Diffusion models beat gans on image synthesis[J]. Advances in Neural Information Processing Systems, 2021, 34: 8780-8794. |
[9] | PEEBLES W, XIE S. Scalable diffusion models with Transformers[DB/OL]. (2022-12-19)[2023-02-06]. https://arxiv.org/abs/2212.09748. |
[10] | WANG Z, CUN X, BAO J, et al. Uformer: A general u-shaped transformer for image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 17683-17693. |
[11] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 5728-5739. |
[12] | YAO T, LI Y, PAN Y, et al. Dual vision transformer[DB/OL]. (2022-07-11) [2023-02-06]. https://arxiv.org/abs/2207.04976. |
[13] | CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration[C]// Proceedings of the European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 17-33. |
[14] | LIU Y F, JAW D W, HUANG S C, et al. DesnowNet: Context-aware deep network for snow removal[J]. IEEE Transactions on Image Processing, 2018, 27(6): 3064-3073. |
[15] |
鲍先富, 强赞霞, 杨关. 功能解耦和谱特征融合的雪霾消除模型[J]. 计算机工程与应用, 2023, 59(13): 211-219.
doi: 10.3778/j.issn.1002-8331.2203-0566 |
BAO Xianfu, QIANG Zanxia, YANG Guan. Generative adverbial network for function decoupling and edge feature fusion for snow and haze elimination[J]. Computer Engineering & Applications, 2023, 59(13):211-219. | |
[16] | 柴国强, 王大为, 芦宾, 等. 基于注意机制的轻量化稠密连接网络单幅图像去雨[J]. 北京航空航天大学学报, 2022, 48(11): 2186-2192. |
CHAI Guoqiang, WANG Dawei, LU Bin, et al. Lightweight densely connected network based on attention mechanism for single-image deraining[J]. Journal of Beijing University of Aeronautics & Astronautics, 2022, 48(11): 2186-2192. | |
[17] | QIAN R, TAN R T, YANG W, et al. Attentive generative adversarial network for raindrop removal from a single image[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 2482-2491. |
[18] | CHEN H, WANG Y, GUO T, et al. Pre-trained image processing transformer[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Kuala Lumpur, Malaysia: IEEE, 2021: 12299-12310. |
[19] | LI B, LIU X, HU P, et al. All-in-one image restoration for unknown corruption[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 17452-17462. |
[20] | LI R, CHEONG L F, TAN R T. Heavy rain image restoration: Integrating physics model and conditional adversarial learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 1633-1642. |
[21] | LI S, ARAUJO I B, REN W, et al. Single image deraining: A comprehensive benchmark analysis[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 3838-3847. |
[22] | LI X, WU J, LIN Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]// Proceedings of the European Conference on Computer Vision. Salty Lake City, UT, USA: Springer, 2018: 254-269. |
[23] | WANG T, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 12270-12279. |
[24] | CHEN W, FANG H, DING J, et al. JSTASR: Joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal[C]// Proceedings of the European Conference on Computer Vision. Glasgow, UK: Springer, 2020: 754-770. |
[25] | LIANG J, CAO J, SUN G, et al. Swinir: Image restoration using swin transformer[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, canada: IEEE, 2021: 1833-1844. |
[26] | ZHANG K, LI R, YU Y, et al. Deep dense multi-scale network for snow removal using semantic and depth priors[J]. IEEE Transactions on Image Processing, 2021, 30: 7419-7431. |
[27] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2223-2232. |
[28] | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Venice, Italy: IEEE, 2017: 1125-1134. |
[29] | JIANG K, WANG Z, YI P, et al. Rain-free and residue hand-in-hand: A progressive coupled network for real-time image deraining[J]. IEEE Transactions on Image Processing, 2021, 30: 7404-7418. |
[30] | ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Kuala Lumpur, Malaysia: IEEE, 2021: 14821-14831. |
[31] | LIU X, SUGANUMA M, SUN Z, et al. Dual residual networks leveraging the potential of paired operations for image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 7007-7016. |
[32] | QUAN Y, DENG S, CHEN Y, et al. Deep learning for seeing through window with raindrops[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul Korea: IEEE, 2019: 2463-2471. |
[33] | QUAN R, YU X, LIANG Y, et al. Removing raindrops and rain streaks in one go[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Kuala Lumpur, Malaysia: IEEE, 2021: 9147-9156. |
[34] | XIAO J, FU X, LIU A, et al. Image de-raining transformer[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2022: 1-18. |
[1] | SUN Xin, WANG Simin, XIE Jingdong, JIANG Hailin, WANG Sen. Improved Transformer-PSO Short-Term Electricity Price Prediction Method Considering Multidimensional Influencing Factors [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1420-1431. |
[2] | ZHANG Guodong, LIU Kai, PU Haitao, YAO Fuqiang, ZHANG Shuaishuai. Identification of Inrush Current and Fault Current Based on Long Short-Term Memory Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 730-738. |
[3] | HOU Shujuan* (侯舒娟),ZHU Wenping (朱文萍),LI Hai (李海). Stagewise Training for Hybrid-Distorted Image Restoration [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 793-801. |
[4] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[5] | GAO Tao, WEN Yuanbo, CHEN Ting, ZHANG Jing. A Single Image Deraining Algorithm Based on Swin Transformer [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 613-623. |
[6] | FENG Yuxin, ZHANG Dongdong, LI Xiaorun. Blind Restoration Method of Small Target Image Based on Region Fusion [J]. Air & Space Defense, 2023, 6(4): 64-73. |
[7] | DI Ziqi, WANG Xiangyu, WU Shuang, ZHOU Yu. An Algorithm for Trajectory Generation and Prediction of Hypersonic Vehicle Based on Transformer Architecture [J]. Air & Space Defense, 2023, 6(4): 35-41. |
[8] | ZHANG Junning, SU Qunxing, WANG Cheng, XU Chao, LI Yining. A Domain Adaptive Semantic Segmentation Network Based on Improved Transformation Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1158-1168. |
[9] | WU Guangli, GUO Zhenzhou, LI Leiting, WANG Chengxiang. Video Abnormal Detection Combining FCN with LSTM [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 607-614. |
[10] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[11] | JIANG Xinghao, ZHAO Zheyu, XU Ke . Adversarial Attack Technology for Vision-Based Aircraft Intelligent Object Detection [J]. Air & Space Defense, 2021, 4(1): 8-13. |
[12] | SONG Simeng (宋思蒙), CHEN Xiaoxin (陈孝信), QIAN Yong (钱勇), WANG Hui (王辉), ZHANG Yue (张悦), SHENG Gehao (盛戈皞), JIANG Xiuchen (江秀臣). Research on Time-Domain Transfer Impedance Measurement Technology for High Frequency Current Transformers in Partial Discharge Detection of Cables [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(1): 10-17. |
[13] | REN Xuanguang (任炫光), PAN Han (潘汉), JING Zhongliang (敬忠良), GAO Lei (高磊). Multi-Image Restoration Method Combined with Total Generalized Variation and lp-Norm Regularizations [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 551-558. |
[14] | MA Jin (马进), XUE Teng (薛腾), SHAO Quanquan (邵全全), HU Jie (胡洁), WANG Weiming (王伟明) . Research on Spatially Adaptive High-Order Total Variation Model for Weak Fluorescence Image Restoration [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 1-7. |
[15] | JIN Zhijian,HONG Zhiyong,ZHAO Yue,LI Zhuyong,HUANG Zhen,WU Wei,ZHANG Zhiwei,LI Xiaofen,YAO Linpeng,SHENG Jie. Review of Technology and Development in the Power Applications Based on Second-Generation High-Temperature Superconductors [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1155-1165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||