Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (3): 413-423.doi: 10.16183/j.cnki.jsjtu.2023.301
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
XUE Ang, JIANG Enyu(), ZHANG Wentao, LIN Shunfu, MI Yang
Received:
2023-07-06
Revised:
2023-09-17
Accepted:
2023-11-08
Online:
2025-03-28
Published:
2025-04-02
CLC Number:
XUE Ang, JIANG Enyu, ZHANG Wentao, LIN Shunfu, MI Yang. Detection of Foreign Bodies in Transmission Line Channels Based on Fusion of Swin Transformer and YOLOv5[J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 413-423.
[1] | 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43(19): 7423-7446. |
LIU Chuanyang, WU Yiquan. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43(19): 7423-7446. | |
[2] | ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning: A review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232. |
[3] | 隋宇, 宁平凡, 牛萍娟, 等. 面向架空输电线路的挂载无人机电力巡检技术研究综述[J]. 电网技术, 2021, 45(9): 3636-3648. |
SUI Yu, NING Pingfan, NIU Pingjuan, et al. Review on mounted UAV for transmission line inspection[J]. Power System Technology, 2021, 45(9): 3636-3648. | |
[4] | CHEN M H, TIAN Y N, XING S Y, et al. Environment perception technologies for power transmission line inspection robots[J]. Journal of Sensors, 2021, 2021: 5559231. |
[5] | XIANG X Z, LV N, GUO X L, et al. Engineering vehicles detection based on modified faster R-CNN for power grid surveillance[J]. Sensors, 2018, 18(7): 2258. |
[6] | ZHU J G, GUO Y, YUE F D, et al. A deep learning method to detect foreign objects for inspecting power transmission lines[J]. IEEE Access, 2020, 8: 94065-94075. |
[7] | LEI X S, SUI Z H. Intelligent fault detection of high voltage line based on the Faster R-CNN[J]. Measurement, 2019, 138: 379-385. |
[8] | 魏业文, 李梅, 解园琳, 等. 基于改进Faster-RCNN的输电线路巡检图像检测[J]. 电力工程技术, 2022, 41(2): 171-178. |
WEI Yewen, LI Mei, XIE Yuanlin, et al. Transmission line inspection image detection based on improved Faster-RCNN[J]. Electric Power Engineering Technology, 2022, 41(2): 171-178. | |
[9] | XU C F, BO B, LIU Y, et al. Detection method of insulator based on single shot MultiBox detector[J]. Journal of Physics: Conference Series, 2018, 1069: 012183. |
[10] | 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201-1227. |
CHEN Keqi, ZHU Zhiliang, DENG Xiaoming, et al. Deep learning for multi-scale object detection: A survey[J]. Journal of Software, 2021, 32(4): 1201-1227. | |
[11] | XUE B, YI W J, JING F, et al. Complex ISAR target recognition using deep adaptive learning[J]. Engineering Applications of Artificial Intelligence, 2021, 97: 104025. |
[12] | 李振宇, 郭锐, 赖秋频, 等. 基于计算机视觉的架空输电线路机器人巡检技术综述[J]. 中国电力, 2018, 51(11): 139-146. |
LI Zhenyu, GUO Rui, LAI Qiupin, et al. Survey of inspection technology of overhead transmission line robot based on computer vision[J]. Electric Power, 2018, 51(11): 139-146. | |
[13] | 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708. |
SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708. | |
[14] | 张焕龙, 齐企业, 张杰, 等. 基于改进YOLOv5的输电线路鸟巢检测方法研究[J]. 电力系统保护与控制, 2023, 51(2): 151-159. |
ZHANG Huanlong, QI Qiye, ZHANG Jie, et al. Bird nest detection method for transmission lines based on improved YOLOv5[J]. Power System Protection and Control, 2023, 51(2): 151-159. | |
[15] |
李登攀, 任晓明, 颜楠楠. 基于无人机航拍的绝缘子掉串实时检测研究[J]. 上海交通大学学报, 2022, 56(8): 994-1003.
doi: 10.16183/j.cnki.jsjtu.2021.416 |
LI Dengpan, REN Xiaoming, YAN Nannan. Real-time detection of insulator drop string based on UAV aerial photography[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 994-1003. | |
[16] | 谢静, 杜耀文, 刘志坚, 等. 基于轻量化改进型YOLOv5s的可见光绝缘子缺陷检测算法[J]. 电网技术, 2023, 47(12): 5273-5283. |
XIE Jing, DU Yaowen, LIU Zhijian, et al. Defect detection algorithm based on lightweight and improved YOLOv5s for visible light insulators[J]. Power System Technology, 2023, 47(12): 5273-5283. | |
[17] | GU J P, HU J J, JIANG L, et al. Research on object detection of overhead transmission lines based on optimized YOLOv5s[J]. Energies, 2023, 16(6): 2706. |
[18] | 游越, 伊力哈木·亚尔买买提. 基于改进YOLOv5在电力巡检中的目标检测算法研究[J]. 高压电器, 2023, 59(2): 89-96. |
YOU Yue, YILIHAMU Yaermaimaiti. Research on target detection algorithm based on improved YOLOv5 in power patrol inspection[J]. High Voltage Apparatus, 2023, 59(2): 89-96. | |
[19] | LIU Z, LIN Y, CAO Y, et al. Hierarchical vision Transformer using shifted windows[DB/OL]. (2021-08-17)[2023-04-12]. https://arxiv.org/abs/2103.1403. |
[20] |
高涛, 文渊博, 陈婷, 等. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623.
doi: 10.16183/j.cnki.jsjtu.2022.032 |
GAO Tao, WEN Yuanbo, CHEN Ting, et al. A single image deraining algorithm based on Swin Transformer[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 613-623. | |
[21] | MA J Y, TANG L F, FAN F, et al. SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200-1217. |
[22] | ZHANG C, WANG L J, CHENG S L, et al. SwinSUNet: Pure transformer network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5224713. |
[23] | 郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J]. 中国电机工程学报, 2023, 43(6): 2319-2331. |
HAO Shuai, YANG Lei, MA Xu, et al. YOLOv5 transmission line fault detection based on attention mechanism and cross-scale feature fusion[J]. Proceedings of the CSEE, 2023, 43(6): 2319-2331. | |
[24] | XUE B, HE Y, JING F, et al. Dynamic coarse-to-fine ISAR image blind denoising using active joint prior learning[J]. International Journal of Intelligent Systems, 2021, 36(8): 4143-4166. |
[25] | XUE B, HE Y, JING F, et al. Robot target recognition using deep federated learning[J]. International Journal of Intelligent Systems, 2021, 36(12): 7754-7769. |
[1] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[2] | WANG Yili, LI Qiang, SHEN Junyi, YANG Yidong, WANG Qi. Multi-Modal Warship Image Generation and Its Key Part Detection [J]. Air & Space Defense, 2025, 8(1): 77-85. |
[3] | LI Chuchen, TANG Shanjun, ZHAO Bingqing. Weak Object Detection Algorithm Based on High Resolution Remote Sensing Image of UAV Platform [J]. Air & Space Defense, 2025, 8(1): 41-47. |
[4] | LIU Jing, GUO Xiaolei, ZHANG Xinhai, MAO Jingjun, LYU Ruiheng. A Lightweight Aerial Rotated Object Detection Algorithm of Air-to-Surface Missile [J]. Air & Space Defense, 2024, 7(4): 106-113. |
[5] | ZHANG Tao, ZHANG Xuerui, CHEN Yong, ZHONG Kelin, LUO Qijun. Airfield Multi-Scale Object Detection for Visual Navigation in Civil Aircraft [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1816-1825. |
[6] | NIU Guochen, SUN Xiangyu, YUAN Zhengyan. Vehicle-Road Collaborative Perception Method Based on Dual-Stream Feature Extraction [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1826-1834. |
[7] | ZHANG Xiaoyu, DU Xiangrun, ZHANG Jialiang, TAN Panlong, YANG Shibo. Research on Infrared Image Object Detection Method Based on Deformable DETR [J]. Air & Space Defense, 2024, 7(1): 16-23. |
[8] | WU Xingl(武星), ZHANG Qingfeng(张庆丰), WANG Jianjia(王健嘉), YAO Junfeng(姚骏峰), Guo Yike.(郭毅可). Multiple Detection Model Fusion Framework for Printed Circuit Board Defect Detection [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 717-727. |
[9] | XING Zhiwei, KAN Ben, LIU Zishuo, LI Biao, LUO Qian. Airport Pavement Snow and Ice State Perception Based on Improved YOLOX-s [J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1292-1304. |
[10] | WEI Zhifei, SONG Quanhong, LI Fang, YANG Qingyu, WANG Aihua. Research on Object Detection Algorithm Based on Neural Network Model Compression Technique [J]. Air & Space Defense, 2021, 4(4): 107-112. |
[11] | QIU Zhongyu, ZHAO Wenlong, GAO Wen, PAN Hongtao, SHI Randong. Comparison and Analysis of Object Detection Algorithm Based on Dynamic Vision Sensor [J]. Air & Space Defense, 2021, 4(4): 101-106. |
[12] | JIANG Xinghao, ZHAO Zheyu, XU Ke . Adversarial Attack Technology for Vision-Based Aircraft Intelligent Object Detection [J]. Air & Space Defense, 2021, 4(1): 8-13. |
[13] | LU Jiahui (陆佳辉), CHEN Yimin* (陈一民), ZOU Yibo (邹一波), ZOU Guozhi (邹国志). Long-Term Tracking Based on Spatio-Temporal Context [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 504-512. |
[14] | MU Nan1 (穆楠), XU Xin1,2* (徐 新), WANG Yinglin3 (王英林), ZHANG Xiaolong1,2 (张晓龙). A Multiscale Superpixel-Level Salient Object Detection Model Using Local-Global Contrast Cue [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(1): 121-128. |
[15] | GAO Jingli1,WEN Chenglin2,LIU Meiqin1. Low-Speed Small Target Detection Based on SVD and Superposition [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 876-883. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 408
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 228
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||