Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (3): 424-434.doi: 10.16183/j.cnki.jsjtu.2023.334
• New Type Power System and the Integrated Energy • Previous Articles
TANG Yuhang1, YU Kun1(), ZENG Xiangjun1, NI Yanru1, CHENG Xinxiang1, HAN Wei2
Received:
2023-07-22
Revised:
2023-11-21
Accepted:
2023-12-11
Online:
2025-03-28
Published:
2025-04-02
CLC Number:
TANG Yuhang, YU Kun, ZENG Xiangjun, NI Yanru, CHENG Xinxiang, HAN Wei. Calculation Method for Underground Metal Corrosion Due to Stray Current Based on Ground Potential Distribution[J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 424-434.
Tab.1
Circuit parameters of grounding network return flow model
参数 | 参数含义 | 参数 | 参数含义 |
---|---|---|---|
RG/(Ω·km-1) | 钢轨直流电阻 | ρ/(Ω·km) | 土壤电阻率 |
RP/(Ω·km-1) | 排流网纵向电阻 | 第i段单列车线路模型的首端牵引电流 | |
RJ/(Ω·km-1) | 结构钢筋纵向电阻 | 第i段单列车线路模型的末端牵引电流 | |
RD/(Ω·km-1) | 大地纵向电阻 | 第j段双列车线路模型的首端牵引电流 | |
Rg1/(Ω·km) | 钢轨-排流网过渡电阻 | 第j段双列车线路模型的末端牵引电流 | |
Rg2/(Ω·km) | 排流网-结构钢筋过渡电阻 | 第i段单列车线路模型网孔y的回路电流 | |
Rg3/(Ω·km) | 结构钢筋-大地过渡电阻 | 第j段双列车线路模型网孔z的回路电流 |
[1] |
彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
doi: 10.11902/1005.4537.2021.265 |
PENG Yizhan, GONG Fuyuan, ZHAO Yuxi. Distribution of stray current induced corrosion of reinforced bars within concrete based on electric field analysis and experiment with transparent imitated concrete[J]. Journal of Chinese Society for Corrosion & Protection, 2022, 42(5): 813-818. | |
[2] | 彭平, 曾祥君, 倪砚茹, 等. 考虑地铁杂散电流影响的变压器直流偏磁电流建模方法[J]. 电力科学与技术学报, 2021, 36(1): 192-198. |
PENG Ping, ZENG Xiangjun, NI Yanru, et al. Modeling for the DC bias current of transformer caused by the metro stray current[J]. Journal of Electric Power Science & Technology, 2021, 36(1): 192-198. | |
[3] | 史云涛, 赵丽平, 林圣, 等. 城市电网中地铁杂散电流分布规律及影响因素分析[J]. 电网技术, 2021, 45(5): 1951-1957. |
SHI Yuntao, ZHAO Liping, LIN Sheng, et al. Analysis of distribution of metro stray current in urban power grid and its influencing factors[J]. Power System Technology, 2021, 45(5): 1951-1957. | |
[4] | 倪砚茹, 喻锟, 曾祥君, 等. 地铁杂散电流引起变压器直流偏磁电流的相关性分析[J]. 电力科学与技术学报, 2021, 36(6): 136-143. |
NI Yanru, YU Kun, ZENG Xiangjun, et al. A correlation analysis on transformer DC bias current caused by metro stray current[J]. Journal of Electric Power Science & Technology, 2021, 36(6): 136-143. | |
[5] | WANG A M, LIN S, HU Z H, et al. Evaluation model of DC current distribution in AC power systems caused by stray current of DC metro systems[J]. IEEE Transactions on Power Delivery, 2021, 36(1): 114-123. |
[6] | CHEN R C, YANG Y X, JIN T. A hierarchical coordinated control strategy based on multi-port energy router of urban rail transit[J]. Protection & Control of Modern Power Systems, 2022, 7(1): 1-12. |
[7] | 黄华, 陈璐, 吴天逸, 等. 城市轨道交通动态运行对交流电网变压器偏磁直流的影响[J]. 电网技术, 2022, 46(11): 4524-4533. |
HUANG Hua, CHEN Lu, WU Tianyi, et al. Influence of dynamic operation of urban rail transit on DC magnetic bias of AC power grid transformer[J]. Power System Technology, 2022, 46(11): 4524-4533. | |
[8] | 闫明富, 李夏青, 王奎鹃. 地铁钢轨电位和杂散电流分布研究及仿真[J]. 北京石油化工学院学报, 2013, 21(1): 37-41. |
YAN Mingfu, LI Xiaqing, WANG Kuijuan. Research and simulation of metro rail potential and stray current distribution[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2013, 21(1): 37-41. | |
[9] | SVOBODA P, ZAJACZEK S, ŠPRLÁK R, et al. Simulation of stray currents on single track in Matlab Simulink[C]//Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering. Brno-Bystrc, Czech Republic: IEEE, 2014: 609-612. |
[10] | 刘燕, 王京梅, 赵丽, 等. 地铁杂散电流分布的数学模型[J]. 工程数学学报, 2009, 26(4): 571-576. |
LIU Yan, WANG Jingmei, ZHAO Li, et al. Mathematical model of distribution of metro stray current[J]. Chinese Journal of Engineering Mathematics, 2009, 26(4): 571-576. | |
[11] | 梅进武. 地铁杂散电流分布研究[D]. 成都: 西南交通大学, 2017. |
MEI Jinwu. Study on distribution of metro stray current[D]. Chengdu: Southwest Jiaotong University, 2017. | |
[12] | LIN S, ZHOU Q, LIN X H, et al. Infinitesimal method based calculation of metro stray current in multiple power supply sections[J]. IEEE Access, 2020, 8: 96581-96591. |
[13] | FICHERA F, MARISCOTTI A, OGUNSOLA A. Evaluating stray current from DC electrified transit systems with lumped parameter and multi-layer soil models[C]//Eurocon. Zagreb, Croatia: IEEE, 2013: 1187-1192. |
[14] | 汪佳. 多列车运行下地铁杂散电流分布研究[D]. 成都: 西南交通大学, 2012. |
WANG Jia. Study on distribution of metro stray current based on multi-locomotive operation[D]. Chengdu: Southwest Jiaotong University, 2012. | |
[15] | 胡上茂, 刘刚, 廖民传, 等. 高压直流接地极单极运行对埋地管道电位的干扰与影响[J]. 南方电网技术, 2023, 17(9): 104-111. |
HU Shangmao, LIU Gang, LIAO Minchuan, et al. Interference and impact of HVDC grounding electrode monopolar operation on buried pipeline potential[J]. Southern Power System Technology, 2023, 17(9): 104-111. | |
[16] | 白锋, 李雄, 曹方圆. 高压直流接地极对埋地油气管道腐蚀影响的等效电流研究[J]. 电网技术, 2019, 43(5): 1834-1840. |
BAI Feng, LI Xiong, CAO Fangyuan. Equivalent current study on the corrosion effect of HVDC grounding electrode on buried oil and gas pipeline[J]. Power System Technology, 2019, 43(5): 1834-1840. | |
[17] | 钱成. 直流接地极入地电流对埋地金属管道的电磁影响分析[D]. 吉林: 东北电力大学, 2018. |
QIAN Cheng. Research on the electromagnetic influence of ground current from DC earth electrode on the buried metal pipeline[D]. Jilin: Northeast Dianli University, 2018. | |
[18] | 耿山, 樊艳芳, 巩晓玲, 等. 特高压直流接地极周边地表电位分布计算与敏感性参数研究[J]. 高压电器, 2019, 55(3): 163-169. |
GENG Shan, FAN Yanfang, GONG Xiaoling, et al. Calculation of earth surface potential around UHVDC grounding electrode and analysis on sensitive parameters[J]. High Voltage Apparatus, 2019, 55(3): 163-169. | |
[19] | 郭名文, 樊艳芳, 耿山, 等. 特高压直流接地极周边断裂结构对地表电位分布的影响研究[J]. 电力系统保护与控制, 2019, 47(2): 73-79. |
GUO Mingwen, FAN Yanfang, GENG Shan, et al. Study on the effect of fracture structure adjacent to ground electrodes of UHVDC power transmission lines on earth surface potential distribution[J]. Power System Protection & Control, 2019, 47(2): 73-79. | |
[20] | 刘连光, 马成廉. 基于有限元方法的直流输电接地极多层土壤地电位分布计算[J]. 电力系统保护与控制, 2015, 43(18): 1-5. |
LIU Lianguang, MA Chenglian. Calculation of multi-layer soil earth surface potential distribution of HVDC due to finite element method[J]. Power System Protection & Control, 2015, 43(18): 1-5. | |
[21] | 孟晓波, 张波, 廖永力, 等. 直流接地极入地电流对附近埋地管道电位的影响[J]. 中国电机工程学报, 2019, 39(20): 6113-6121. |
MENG Xiaobo, ZHANG Bo, LIAO Yongli, et al. Potential influence of ground return current from HVDC grounding electrode on buried pipeline[J]. Proceedings of the CSEE, 2019, 39(20): 6113-6121. | |
[22] | 冯夏辉. 直流接地极周围埋地金属管道腐蚀与防护措施研究[D]. 南昌: 华东交通大学, 2020. |
FENG Xiahui. Study on corrosion and protection measures of buried metal pipeline around DC grounding electrode[D]. Nanchang: East China Jiaotong University, 2020. | |
[23] | 夏能弘, 唐文涛, 李怀慎, 等. 地铁轨道局部绝缘损坏下动态杂散电流及地电位梯度建模与分析[J]. 电力系统保护与控制, 2023, 51(4): 53-61. |
XIA Nenghong, TANG Wentao, LI Huaishen, et al. Modeling and analysis of dynamic stray current and ground potential gradient under partial insulation damage of a metro track[J]. Power System Protection & Control, 2023, 51(4): 53-61. | |
[24] |
王禹桥, 黄玉坚, 彭成宽, 等. 基于地表电位梯度的地铁杂散电流动态干扰范围评估模型[J]. 北京交通大学学报, 2020, 44(3): 30-36.
doi: 10.11860/j.issn.1673-0291.20200008 |
WANG Yuqiao, HUANG Yujian, PENG Chengkuan, et al. Evaluation model for dynamic interference of subway stray current based on surface potential gradient[J]. Journal of Beijing Jiaotong University, 2020, 44(3): 30-36.
doi: 10.11860/j.issn.1673-0291.20200008 |
|
[25] | 倪砚茹, 曾祥君, 喻锟, 等. 地铁杂散电流引起动态地电位分布建模及影响因素分析[J]. 中国电机工程学报, 2023, 43(23): 9059-9072. |
NI Yanru, ZENG Xiangjun, YU Kun, et al. Modeling of dynamic ground potential distribution caused by subway stray current and analysis of influencing factors[J]. Proceedings of the CSEE, 2023, 43(23): 9059-9072. |
[1] | SUN Xin, WANG Simin, XIE Jingdong, JIANG Hailin, WANG Sen. Improved Transformer-PSO Short-Term Electricity Price Prediction Method Considering Multidimensional Influencing Factors [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1420-1431. |
[2] | HE Tong (何彤), XIONG Ruiqi (熊瑞琦). Research on Multi-Objective Real-Time Optimization of Automatic Train Operation (ATO) in Urban Rail Transit [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 327-335. |
[3] | ZHONG Guoqiang,WANG Hao,ZHANG Guohua,QIN Weimin WANG Chengtang,XIONG Junfeng. Analysis and Prediction of Factors Affecting Horizontal Displacement of Foundation Pit Based on RS-MIV-ELM Model [J]. Journal of Shanghai Jiaotong University, 2018, 52(11): 1508-1515. |
[4] |
MIAO Zhiping1,ZHANG Feng2.
Industrial Water Use Efficiency Index and Its Influencing Factors Under the Background of New Industrialization [J]. Journal of Shanghai Jiaotong University, 2017, 51(6): 761-768. |
[5] | Yibo CUI, Yibo JIAO, Wang SUN, Zhuangfeng WANG. Design of CBTC System Simulation Laboratory for Urban Rail Transit [J]. Research and Exploration in Laboratory, 2017, 36(5): 122-125. |
[6] | YANG Zili,LIAN Zhiwei. Analysis of Influencing Factors on Performance of the L.D.A.C. System Based on the Concept of Ideal Dehumidification Efficiency [J]. Journal of Shanghai Jiaotong University, 2014, 48(06): 821-826. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 224
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||