Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (10): 1596-1605.doi: 10.16183/j.cnki.jsjtu.2023.151
• Original article • Previous Articles Next Articles
WANG Jing(), LI Jinghui, YANG Jiarong, WANG E
Received:
2023-04-21
Revised:
2023-09-22
Accepted:
2023-09-25
Online:
2024-10-28
Published:
2024-11-01
CLC Number:
WANG Jing, LI Jinghui, YANG Jiarong, WANG E. Construction of Optimal Locally Repairable Codes of Triangular Association Schemes[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1596-1605.
Tab.1
Comparative analysis of parameters of Construction 1
构造方式 | 构造参数 | 最小距离 | 相对距离 |
---|---|---|---|
构造1构造的BLRCs | n= | dmin=3 | |
基于近正则图构造的BLRCs[ | dmin=3 | ||
基于单位矩阵变换构造的BLRCs[ | n=r2+2r, k=r2, r,t=2 | dmin=3 | |
基于直积码构造的BLRCs[ | n=(r+1)2, k=r2, r,t=2 | dmin=4 |
Tab.3
Comparative analysis of parameters of Construction 2
构造方式 | n | k | r | t | R |
---|---|---|---|---|---|
构造2构造的BLRCs | r>2 | t>2 | |||
基于迹函数构造的BLRCs[ | 2m-1 | 2m-1-1 | m-1 | m | |
基于超图构造的BLRCs[ | v+ | v | v≥t(r-1)+1, r|vt | ||
基于阵列LDPC码构造的BLRCs[ | r2+rt+1 | r2 | r(奇素数) | t(偶数) | |
基于直积码构造的BLRCs[ | (r+1)t | rt | r | t |
[1] | FANG W J, CHEN B, XIA S T, et al. Singleton-optimal LRCs and perfect LRCs via cyclic codes[C]// 2021 IEEE International Symposium on Information Theory. Melbourne, Australia: IEEE, 2021: 3261-3266. |
[2] | YAVARI E, ESMAEILI M. Locally repairable codes: Joint sequential-parallel repair for multiple node failures[J]. IEEE Transactions on Information Theory, 2020, 66(1): 222-232. |
[3] | PAPAILIOPOULOS D S, DIMAKIS A G. Locally repairable codes[J]. IEEE Transactions on Information Theory, 2014, 60(10): 5843-5855. |
[4] | WANG A Y, ZHANG Z F, LIN D D. Bounds for binary linear locally repairable codes via a sphere-packing approach[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4167-4179. |
[5] | GOPALAN P, HUANG C, SIMITCI H, et al. On the locality of codeword symbols[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6925-6934. |
[6] | LUO Y, XING C P, YUAN C. Optimal locally repairable codes of distance 3 and 4 via cyclic codes[J]. IEEE Transactions on Information Theory, 2019, 65(2): 1048-1053. |
[7] | JIN L F. Explicit construction of optimal locally recoverable codes of distance 5 and 6 via binary constant weight codes[J]. IEEE Transactions on Information Theory, 2019, 65(8): 4658-4663. |
[8] | HAO J, XIA S T, SHUM K W, et al. Bounds and constructions of locally repairable codes: Parity-check matrix approach[J]. IEEE Transactions on Information Theory, 2020, 66(12): 7465-7474. |
[9] | FU Q, GUO L B, LI R H, et al. On the locality of some optimal ternary codes with dimension 6[C]// 2020 13th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2020: 155-158. |
[10] | CAI H, CHENG M Q, FAN C L, et al. Optimal locally repairable systematic codes based on packings[J]. IEEE Transactions on Communications, 2019, 67(1): 39-49. |
[11] | RAWAT A S, PAPAILIOPOULOS D S, DIMAKIS A G, et al. Locality and availability in distributed storage[J]. IEEE Transactions on Information Theory, 2016, 62(8): 4481-4493. |
[12] | TAMO I, BARG A. Bounds on locally recoverable codes with multiple recovering sets[C]// 2014 IEEE International Symposium on Information Theory. Honolulu, USA: IEEE, 2014: 691-695. |
[13] | WANG A Y, ZHANG Z F, LIN D D. Two classes of (r, t)-locally repairable codes[C]// 2016 IEEE International Symposium on Information Theory. Barcelona, Spain:IEEE, 2016: 445-449. |
[14] | HAO J, XIA S T, CHEN B. On the single-parity locally repairable codes with availability[C]// 2016 IEEE/CIC International Conference on Communications in China. Chengdu, China: IEEE, 2016: 1-4. |
[15] | BALAJI S B, KUMAR P V. Bounds on the rate and minimum distance of codes with availability[C]// 2017 IEEE International Symposium on Information Theory. Aachen, Germany: IEEE, 2017: 3155-3159. |
[16] | KIM J H, SONG H Y. Hypergraph-based binary locally repairable codes with availability[J]. IEEE Communications Letters, 2017, 21(11): 2332-2335. |
[17] | TAN P, ZHOU Z C, SIDORENKO V, et al. Two classes of optimal LRCs with information (r, t)-locality[J]. Designs, Codes and Cryptography, 2020, 88(9): 1741-1757. |
[18] | PRAKASH N, LALITHA V, BALAJI S B, et al. Codes with locality for two erasures[J]. IEEE Transactions on Information Theory, 2019, 65(12): 7771-7789. |
[19] | BALAJI S B, PRASANTH K P, KUMAR P V. Binary codes with locality for multiple erasures having short block length[C]// 2016 IEEE International Symposium on Information Theory. Barcelona, Spain:IEEE, 2016: 655-659. |
[20] | BAILEY R. Association schemes: Designed experiments, algebra, and combinatorics[M]. Cambridge: Cambridge University Press, 2004. |
[21] | WANG J, SHEN K Q, LIU X Y, et al. Construction of binary locally repairable codes with optimal distance and code rate[J]. IEEE Communications Letters, 2021, 25(7): 2109-2113. |
[22] | WANG A Y, ZHANG Z F, LIU M L. Achieving arbitrary locality and availability in binary codes[C]// 2015 IEEE International Symposium on Information Theory. Hong Kong, China: IEEE, 2015: 1866-1870. |
[1] | XU Liangye, SHI Lianxing, SHAN Rongsheng. A Consistency Checking Method for Erasure-Coded Striped Data [J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 579-584. |
[2] | HUANG He, XIONG Wu, WU Kun, WANG Huifeng, RU Feng, WANG Jun. K-means Hybrid Iterative Clustering Based on Memory Transfer Sailfish Optimization [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1638-1648. |
[3] | DENG Kai, GUO Hong. An Approximate Programming Method on Solving the Minimum Distance Between Intersecting Lines on Offshore Jacket [J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 313-316. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||