[1] |
FANG W J, CHEN B, XIA S T, et al. Singleton-optimal LRCs and perfect LRCs via cyclic codes[C]// 2021 IEEE International Symposium on Information Theory. Melbourne, Australia: IEEE, 2021: 3261-3266.
|
[2] |
YAVARI E, ESMAEILI M. Locally repairable codes: Joint sequential-parallel repair for multiple node failures[J]. IEEE Transactions on Information Theory, 2020, 66(1): 222-232.
|
[3] |
PAPAILIOPOULOS D S, DIMAKIS A G. Locally repairable codes[J]. IEEE Transactions on Information Theory, 2014, 60(10): 5843-5855.
|
[4] |
WANG A Y, ZHANG Z F, LIN D D. Bounds for binary linear locally repairable codes via a sphere-packing approach[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4167-4179.
|
[5] |
GOPALAN P, HUANG C, SIMITCI H, et al. On the locality of codeword symbols[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6925-6934.
|
[6] |
LUO Y, XING C P, YUAN C. Optimal locally repairable codes of distance 3 and 4 via cyclic codes[J]. IEEE Transactions on Information Theory, 2019, 65(2): 1048-1053.
|
[7] |
JIN L F. Explicit construction of optimal locally recoverable codes of distance 5 and 6 via binary constant weight codes[J]. IEEE Transactions on Information Theory, 2019, 65(8): 4658-4663.
|
[8] |
HAO J, XIA S T, SHUM K W, et al. Bounds and constructions of locally repairable codes: Parity-check matrix approach[J]. IEEE Transactions on Information Theory, 2020, 66(12): 7465-7474.
|
[9] |
FU Q, GUO L B, LI R H, et al. On the locality of some optimal ternary codes with dimension 6[C]// 2020 13th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2020: 155-158.
|
[10] |
CAI H, CHENG M Q, FAN C L, et al. Optimal locally repairable systematic codes based on packings[J]. IEEE Transactions on Communications, 2019, 67(1): 39-49.
|
[11] |
RAWAT A S, PAPAILIOPOULOS D S, DIMAKIS A G, et al. Locality and availability in distributed storage[J]. IEEE Transactions on Information Theory, 2016, 62(8): 4481-4493.
|
[12] |
TAMO I, BARG A. Bounds on locally recoverable codes with multiple recovering sets[C]// 2014 IEEE International Symposium on Information Theory. Honolulu, USA: IEEE, 2014: 691-695.
|
[13] |
WANG A Y, ZHANG Z F, LIN D D. Two classes of (r, t)-locally repairable codes[C]// 2016 IEEE International Symposium on Information Theory. Barcelona, Spain:IEEE, 2016: 445-449.
|
[14] |
HAO J, XIA S T, CHEN B. On the single-parity locally repairable codes with availability[C]// 2016 IEEE/CIC International Conference on Communications in China. Chengdu, China: IEEE, 2016: 1-4.
|
[15] |
BALAJI S B, KUMAR P V. Bounds on the rate and minimum distance of codes with availability[C]// 2017 IEEE International Symposium on Information Theory. Aachen, Germany: IEEE, 2017: 3155-3159.
|
[16] |
KIM J H, SONG H Y. Hypergraph-based binary locally repairable codes with availability[J]. IEEE Communications Letters, 2017, 21(11): 2332-2335.
|
[17] |
TAN P, ZHOU Z C, SIDORENKO V, et al. Two classes of optimal LRCs with information (r, t)-locality[J]. Designs, Codes and Cryptography, 2020, 88(9): 1741-1757.
|
[18] |
PRAKASH N, LALITHA V, BALAJI S B, et al. Codes with locality for two erasures[J]. IEEE Transactions on Information Theory, 2019, 65(12): 7771-7789.
|
[19] |
BALAJI S B, PRASANTH K P, KUMAR P V. Binary codes with locality for multiple erasures having short block length[C]// 2016 IEEE International Symposium on Information Theory. Barcelona, Spain:IEEE, 2016: 655-659.
|
[20] |
BAILEY R. Association schemes: Designed experiments, algebra, and combinatorics[M]. Cambridge: Cambridge University Press, 2004.
|
[21] |
WANG J, SHEN K Q, LIU X Y, et al. Construction of binary locally repairable codes with optimal distance and code rate[J]. IEEE Communications Letters, 2021, 25(7): 2109-2113.
|
[22] |
WANG A Y, ZHANG Z F, LIU M L. Achieving arbitrary locality and availability in binary codes[C]// 2015 IEEE International Symposium on Information Theory. Hong Kong, China: IEEE, 2015: 1866-1870.
|