[1] |
AKHAWAJI R, SEDKY M, SOLIMAN A H. Illegal parking detection using Gaussian mixture model and Kalman filter[C]// 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). Piscataway, NJ, USA: IEEE, 2017: 840-847.
|
[2] |
GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2414-2423.
|
[3] |
LI C, WAND M. Combining Markov random fields and convolutional neural networks for image synconfproc[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2479-2486.
|
[4] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2005: 886-893.
|
[5] |
GHOSH A, BHATTACHARYA B, CHOWDHURY S B R. SAD-GAN: Synthetic autonomous driving using generative adversarial networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 1-5.
|
[6] |
MATHIEU M, COUPRIE C, LECUN Y. Deep multi-scale video prediction beyond mean square error[J]. Statistics, 2015, 3(1):834-848.
|
[7] |
XUE Y, XU T, ZHANG H, et al. SegAN: adversarial network with multi-scale L_1 loss for medical image segmentation[J]. Neuroinformatics, 2018, 16(3/4):383-392.
doi: 10.1007/s12021-018-9377-x
URL
|
[8] |
JONATHAN L, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation[J]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
|
[9] |
LI Y S, LU Y, NUNO V. Bidirectional learning for domain adaptation of semantic segmentation[C]// Proceedings of the Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 6929-6938.
|
[10] |
AZADI S, FISHER M, KIM V, et al. Multi-content GAN for fewshot font style transfer [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018.
|
[11] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
URL
|
[12] |
NIU Z J, LIU W, ZHAO J Y, et al. DeepLab-based spatial feature extraction for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2):251-255.
doi: 10.1109/LGRS.2018.2871507
URL
|
[13] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision-ECCV 2018. Amsterdam: Springer International Publishing, 2018: 1-12.
|
[14] |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 2242-2251.
|
[15] |
JUDY H, TAESUNG P. Cycada: Cycle-consistent adversarial domain adaptation[C]// Proceedings of the 35th International Conference on Machine Learning (ICML). Vienna, Austria: IEEE, 2017: 1-9.
|
[16] |
HOFFMAN J, WANG D Q, YU F, et al. FCNs in the wild: Pixel-level adversarial and constraint-based adaptation[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 1-10.
|
[17] |
ZHANG Y, DAVID P, GONG B Q. Curriculum domain adaptation for semantic segmentation of urban scenes[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 2039-2049.
|
[18] |
TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7472-7481.
|
[19] |
SALEH F S, ALIAKBARIAN M S, SALZMANN M, et al. Effective use of synthetic data for urban scene semantic segmentation[C]// Computer Vision-ECCV 2018. Amsterdam: Springer International Publishing, 2018: 86-103.
|
[20] |
LIU M Y, BREUEL T, KAUTZ J. Unsupervised image-to-image translation networks[C]// In Advances in Neural Information Processing Systems 2017. Long Beach, CA, USA: IEEE, 2017: 700-708.
|
[21] |
HUANG X, LIU M Y, BELONGIE S, et al. Multimodal unsupervised image-to-image translation[C]// Computer Vision-ECCV 2018. Amsterdam: Springer International Publishing, 2018: 179-196.
|
[22] |
WU Z X, HAN X T, LIN Y L, et al. DCAN: Dual channel-wise alignment networks for unsupervised scene adaptation[C]// Computer Vision-ECCV 2018. Amsterdam: Springer International Publishing, 2018: 1-12.
|
[23] |
ZHOU T H, BROWN M, SNAVELY N, et al. Unsupervised learning of depth and ego-motion from video[C]// Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA: IEEE, 2017: 6612-6619.
|
[24] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
|
[25] |
RICHTER S R, VINEET V, ROTH S, et al. Playing for data: Ground truth from computer games[C]// Computer Vision-ECCV 2016. Amsterdam: Springer International Publishing, 2016: 102-118.
|
[26] |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 3213-3223.
|
[27] |
LUO Y W, ZHENG L, GUAN T, et al. Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 2502-2511.
|
[28] |
ZOU Y, YU Z D, VIJAYA KUMAR B V K, et al. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training[C]// Computer Vision-ECCV 2018. Amsterdam: Springer International Publishing, 2018: 297-313.
|