Journal of Shanghai Jiaotong University ›› 2012, Vol. 46 ›› Issue (12): 1971-1976.
• Electrotechnology • Previous Articles Next Articles
LI Fu-Dong-1, 2 , WU Min-1, FENG Gao-Yi-3
Received:
2012-06-20
Online:
2012-12-29
Published:
2012-12-29
CLC Number:
LI Fu-Dong-1, 2 , WU Min-1, FENG Gao-Yi-3. Wind Power Slope Events Classification and Forecasting Based on Statistical Analysis and Multiple Support Vector Machines[J]. Journal of Shanghai Jiaotong University, 2012, 46(12): 1971-1976.
[1]Kabouris J, Kanellos F D. Impacts of largescale wind penetration on designing and operation of electric power systems [J]. IEEE Transactions on Sustainable Energy, 2010, 1(2): 107114. [2]Kusiak A, Zheng H, Song Z. Wind farm power prediction: A data mining approach [J]. Wind Energy, 2009, 12(3): 275293. [3]Saurabh S S, Zareipour H, Malik O, et al. A review of wind power and wind speed forecasting methods with different time horizons [C]∥IEEE Conference on North American Power Symposium. Arlington, TX: IEEE, 2010: 18. [4]廖立, 忻建华, 翟海青, 等. 短期负荷预测模型及其影响因素[J]. 上海交通大学学报, 2004, 38(9): 15441547. LIAO Li, XIN Jianhua, ZHAI Haiqing, et al. Short term load forecasting model and the influencing factors [J]. Journal of Shanghai Jiaotong University, 2004, 38(9): 15441547. [5]Bessa R J, Miranda V, Gama J. Entropy and correntropy against minimum square error in offline and online threeday ahead wind power forecasting [J]. IEEE Transactions on Power Systems, 2009, 24(4): 16571666. [6]Catalan J P S, Pousinho H M I, Mendes V M F. Hybrid waveletPSOANFIS approach for shortterm wind power forecasting in Portugal [J]. IEEE Transactions on Sustainable Energy, 2011, 2(1): 5059. [7]Taylor J W, McSharry P E, Buizza R. Wind power density forecasting using ensemble predictions and time series models[J]. IEEE Transactions on Energy Conv, 2009, 24(3): 775782. [8]Foley A M, Leahyz P G, McKeogh E J. Wind power forecasting & prediction methods[C]∥IEEE 9th International Conference on Environment and Electrical Engineering. Prague, Czech Republic: IEEE, 2010: 14. [9]Hodge B, Milligan M. Wind power forecasting error distributions over multiple timescales [C]∥IEEE Power and Energy Society General Meeting. Detroit, Michigan, USA: IEEE, 2011: 18. [10]陈益哲, 张步涵, 王江虹,等. 基于短期负荷预测的微网储能系统主动控制策略[J]. 电网技术, 2011, 35(8): 3540. CHEN Yizhe, ZHANG Buhan, WANG Jianghong, et al. Active control strategy for microgrid energy storage system based on shortterm load forecasting [J]. Power System Technology, 2011, 35(8): 3540. [11]邓乃扬, 田英杰. 支持向量机: 理论、算法与拓展[M].北京:科学出版社, 2009. [12]张广明,袁宇浩,龚松建. 基于改进最小二乘支持向量机方法的短期风速预测[J]. 上海交通大学学报, 2011, 45(8): 11251129. ZHANG Guangming, YUAN Yuhao, GONG Songjian. A predictive model of short term wind speed based on improved least squares support vector machine algorithm [J]. Journal of Shanghai Jiaotong University, 2011, 45(8): 11251129. |
[1] | CHUANG Zhenju, LI Chunzheng, LIU Shewen. Numerical Analysis of Influence of Blade Icing on Dynamic Response of Integrated Wind Turbine Structure [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1176-1187. |
[2] | LI Hengjie, ZHU Jianghao, FU Xiaofei, FANG Chen, LIANG Daming, ZHOU Yun. Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1004-1013. |
[3] | NI Yangfan, YANG Yuanyuan, XIE Zhe, ZHENG Dezhong, WANG Weidong. Multi-Feature Extraction of Pulmonary Nodules Based on LSTM and Attention Structure [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1078-1088. |
[4] | WU Caiyu, (吴彩钰), SABOR Nabil, ZHOU Shihong, (周世鸿), WANG Min, (王 敏), YING Liang (应 亮), WANG Guoxing∗ (王国兴). Gram Matrix-Based Convolutional Neural Network for Biometric Identification Using Photoplethysmography Signal [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 463-472. |
[5] | YU Hao, ZHANG Zhemeng, PENG Sui, ZHANG Zhiqiang, REN Wanxin, LI Canbing. Comparative Analysis of Technical Standards for Offshore Wind Power via VSC-HVDC [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 403-412. |
[6] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[7] | WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. |
[8] | LUO Huimiao (罗晖淼), ZHAO Dongbiao∗ (赵东标), FU Wenqiang (付文强). Speed Planning Algorithm Based on Improved S-Type Acceleration and Deceleration Model [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 786-793. |
[9] | HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. |
[10] | XIAO Ran, WEI Ziqing, ZHAI Xiaoqiang. Hourly Energy Consumption Forecasting for Office Buildings Based on Support Vector Machine [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 331-336. |
[11] | ZHANG Zhanluo (张战罗), ZHANG Zhinan (张执南), EIKEVIK Trygve Magne, SMITT Silje Marie. Ventilation System Heating Demand Forecasting Based on Long Short-Term Memory Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 129-137. |
[12] | LI Fen, ZHOU Erchang, SUN Gaiping, BAI Yongqing, TONG Li, LIU Bangyin, ZHAO Jinbin. A Novel Weather Classification Method and Its Application in Photovoltaic Power Prediction [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519. |
[13] | LIAO Qishu, HU Weihao, CAO Di, HUANG Qi, CHEN Zhe. Distributed Photovoltaic Net Load Forecasting in New Energy Power Systems [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1520-1531. |
[14] | ZHONG Guangyao, TAI Nengling, HUANG Wentao, LI Ran, FU Xiaofei, JI Kunhua. Attention Short-Term Forecasting Method of Distribution Load Based on Multi-Dimensional Clustering [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1532-1543. |
[15] | TAN Jia, LI Zhiyi, YANG Huan, ZHAO Rongxiang, JU Ping. A Multi-Level Collaborative Load Forecasting Method for Distribution Networks Based on Distributed Optimization [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 3229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||