Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (3): 331-336.doi: 10.16183/j.cnki.jsjtu.2019.310
Special Issue: 《上海交通大学学报》2021年“土木建筑工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
Previous Articles Next Articles
XIAO Ran, WEI Ziqing, ZHAI Xiaoqiang()
Received:
2019-10-25
Online:
2021-03-01
Published:
2021-04-02
Contact:
ZHAI Xiaoqiang
E-mail:xqzhai@sjtu.edu.cn
CLC Number:
XIAO Ran, WEI Ziqing, ZHAI Xiaoqiang. Hourly Energy Consumption Forecasting for Office Buildings Based on Support Vector Machine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 331-336.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.310
Tab.2
Comparison of model performance in different seasons
模型 | 季节 | 拟合性能 | 预测性能 | 模型超参数 | ||||
---|---|---|---|---|---|---|---|---|
MAPE | R2 | MAPE | R2 | C | γ | ε | ||
SVM | 供暖季 | 11.03% | 0.952 6 | 8.635% | 0.938 3 | 1 | 0.036 | 0.1 |
过渡季 | 11.73% | 0.934 1 | 14.26% | 0.866 4 | 1 | 0.036 | 0.1 | |
供冷季 | 11.41% | 0.965 9 | 10.04% | 0.970 3 | 1 | 0.036 | 0.1 | |
GS-SVM | 供暖季 | 6.012% | 0.974 2 | 6.482% | 0.943 8 | 10 | 0.1 | 0.001 |
过渡季 | 5.690% | 0.971 1 | 8.710% | 0.939 4 | 100 | 0.1 | 0.001 | |
供冷季 | 5.326% | 0.984 0 | 7.133% | 0.974 8 | 10 | 0.1 | 0.01 |
[1] | 中国建筑节能协会能耗统计专委会. 2018中国建筑能耗研究报告[J]. 建筑,2019(2): 26-31. |
China Association of Building Energy Efficiency. 2018 China building energy research report[J]. Construction and Architecture, 2019(2): 26-31. | |
[2] | 刘海静,潘毅群. 区域建筑群负荷预测及其平准化分析[J]. 暖通空调,2017, 47(4): 14-18. |
LIU Haijing, PAN Yiqun. Load prediction and leveling analysis for community buildings[J]. Heating Ventilating & Air Conditioning, 2017, 47(4): 14-18. | |
[3] | AFRAM A, JANABI S F, FUNG A S, et al. Artificial neural network (ANN) based model predictive control (MPC)and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system[J]. Energy and Buildings, 2017(141): 96-113. |
[4] | FOUCQUIER A, ROBERT S, SUARD F, et al. State of the art in building modelling and energy performances prediction: A review[J]. Renewable and Sustainable Energy Reviews, 2013(23): 272-288. |
[5] | 李紫微,林波荣,陈洪钟. 建筑方案能耗快速预测方法研究综述[J]. 暖通空调,2018, 48(5): 1-8. |
LI Ziwei, LIN Borong, CHEN Hongzhong. Review of rapid prediction method of building energy consumption[J]. Heating Ventilating & Air Conditioning, 2018, 48(5): 1-8. | |
[6] | LI X W, WEN J. Review of building energy modeling for control and operation[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 517-537. |
[7] | BOURDEAU M, ZHAI X Q, NEFZAOUI E, et al. Modeling and forecasting building energy consumption: A review of data-driven techniques[J]. Sustainable Cities and Society, 2019, 48: 101533. |
[8] | 侯博文,谭泽汉,陈焕新,等. 基于支持向量机的建筑能耗预测研究[J]. 制冷技术,2019, 39(2): 1-6. |
HOU Bowen, TAN Zehan, CHEN Huanxin, et al. Research on building energy consumption prediction based on support vector machine[J]. Chinese Journal of Refrigeration Technology, 2019, 39(2): 1-6. | |
[9] | AHMAD T, CHEN H X, GUO Y B, et al. A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review[J]. Energy and Buildings, 2018, 165: 301-320. |
[10] | QUAN H, SRINIVASAN D, KHOSRAVI A. Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73(7): 916-925. |
[11] | PRODREGOSA F, et al. Scikit-learn: Machine learning in Python[J]. Journal of Machine Learning Research, 2011(12): 2825-2830. |
[12] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[13] | SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222. |
[14] | IOWA STATE UNIVERSITY. Iowa environmental mesonet [DB/OL]. (2019-10-15) [2019-10-22]. . |
[15] | SEABOLD S, PERKTOLD J. Statsmodels: Econometric and statistical modeling with Python [EB/OL]. (2010)[2019-10-22]. . |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | LI Xingzhi, HAN Bei, LI Guojie, WANG Keyou, XU Jin. Challenges of Distributed Green Energy Carbon Trading Mechanism and Carbon Data Management [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993. |
[3] | DOU Yibin, CHEN Ang, LU Yunchao, LIU Luguang, LI Zongyang. Identification of Temperature-Dependent Thermophysical Parameters Based on Levenberg-Marquardt Algorithm [J]. Air & Space Defense, 2022, 5(2): 17-26. |
[4] | SHI Yusheng, WANG Xiaoke, ZHOU Yutai, JIANG Guotao, XU Tianyang. Multi-Radar Anti-Deception Jamming Method Based on Chi-Square Test and SVM [J]. Air & Space Defense, 2022, 5(1): 108-114. |
[5] | ZHU Song, QIAN Xiaochao, LU Yingbo, LIU Fei. An XGBoost-Based Effectiveness Prediction Method of Equipment System-of-Systems [J]. Air & Space Defense, 2021, 4(2): 1-. |
[6] | LÜ Xiangmei, LIU Tianqi, LIU Xuan, HE Chuan, NAN Lu, ZENG Hong. Low-Carbon Economic Dispatch of Multi-Energy Park Considering High Proportion of Renewable Energy [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1586-1597. |
[7] | TU Rang, LIU Mengdan, WANG Siqi. Optimization and Performance Analysis of Desiccant Wheel-Assisted Atmospheric Water Harvesting Processes [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1392-1400. |
[8] | ZHU Dong, JIANG Pingping, YAN Guozheng, WANG Zhiwu, HAN Ding, ZHAO Kai, HUA Fangfang, YAO Shengjian, DING Zifan, ZHOU Zerun. Defecation Perception Reconstruction of an Artificial Anal Sphincter System [J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 771-777. |
[9] | TAO Zhengrui, DANG Jiaqiang, XU Jinyang, AN Qinglong, CHEN Ming, WANG Li, REN Fei. Eddy Current Distance Measurement Calibration Method for Curved Surface Parts Based on Support Vector Machine Regression [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 674-681. |
[10] | XU Binbin, HONG Zhen, ZHAO Lei, YU Li. Bias Attack and Detection Method for Networked Inverted Pendulum System [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 697-704. |
[11] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[12] | XU Xianyang,CHEN Lu. Parallel Machine Scheduling Problem Considering Machine Reliability and Energy Consumption [J]. Journal of Shanghai Jiaotong University, 2020, 54(3): 247-255. |
[13] |
DAI Shaohuai, WANG Lei, LI Min, YU Ke, LUO Chen.
Selection of SVM Adaptive Interference Mode Based on Genetic Algorithm
[J]. Air & Space Defense, 2020, 3(2): 59-64.
|
[14] | SHI Guo, SI Guojin, XIA Tangbin, PAN Ershun, XI Lifeng. Joint Optimization Strategy of Predictive Maintenance and Tool Replacement for Energy Consumption Control [J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1235-1243. |
[15] | HU Xiaoqiang,ZHONG Xunyu,ZHANG Xiaoli,PENG Xiafu,HE Ying. A Two-Level Fault Diagnosis Method for Gyro-Quadruplet Assisted by Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1151-1156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||