[1] |
KONG H, AUDIBERT J Y, PONCE J. General road detection from a single image[J]. IEEE Transactions on Image Processing, 2010, 19(8): 2211-2220.
doi: 10.1109/TIP.2010.2045715
pmid: 20371404
|
[2] |
方浩, 贾睿, 卢嘉鹏. 基于颜色和纹理特征的道路图像分割[J]. 北京理工大学学报, 2010, 30(8): 934-939.
|
|
FANG Hao, JIA Rui, LU Jiapeng. Segmentation of full vision images based on colour and texture features[J]. Transactions of Beijing Institute of Technology, 2010, 30(8): 934-939.
|
[3] |
吴骅跃, 段里仁. 基于RGB熵和改进区域生长的非结构化道路识别方法[J]. 吉林大学学报(工学版), 2019, 49(3): 727-735.
|
|
WU Huayue, DUAN Liren. Unstructured road detection method based on RGB entropy and improved region growing[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 727-735.
|
[4] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[5] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[6] |
RONNEBERGER O, FISCHER P, BROX T. UNet: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham, Switzerland: Springer, 2015: 234-241.
|
[7] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 6230-6239.
|
[8] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the European Conference on Computer Vision. Cham, Switzerland: Springer, 2018: 833-851.
|
[9] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-01-01) [2021-04-08]. https://arxiv.org/abs/1706.05587.
|
[10] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 1251-1258.
|
[11] |
BAHETI B, INNANI S, GAJRE S, et al. Semantic scene segmentation in unstructured environment with modified DeepLabV3+[J]. Pattern Recognition Letters, 2020, 138: 223-229.
|
[12] |
LIU R R, HE D Z. Semantic segmentation based on Deeplabv3+ and attention mechanism[C]// 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference. Chongqing, China: IEEE, 2021: 255-259.
|
[13] |
SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2: Inverted residuals and linear bottle-necks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake, USA: IEEE, 2018: 4510-4520.
|
[14] |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2021-04-08]. https://arxiv.org/abs/1704.04861.
|
[15] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision. Cham, Switzerland: Springer, 2018: 3-19.
|