[1] |
陈向国. 智慧供热引领供热行业发展新方向[J]. 节能与环保, 2021(3): 22-25.
|
|
CHEN Xiangguo. Smart heating leads the new development direction of heating industry[J]. Energy Conservation & Environmental Protection, 2021 (3): 22-25.
|
[2] |
陈新和, 裴玮, 邓卫, 等. 数据驱动的虚拟电厂调度特性封装方法[J]. 中国电机工程学报, 2021, 41(14): 4816-4828.
|
|
CHEN Xinhe, PEI Wei, DENG Wei, et al. Data-driven virtual power plant dispatching characteristic packing method[J]. Proceedings of the CSEE, 2021, 41(14): 4816-4828.
|
[3] |
许可. 母管制热电机组热力系统建模与负荷优化分配[D]. 杭州: 浙江大学, 2020.
|
|
XU Ke. Thermal system modeling of main-pipeline cogeneration unit and combined heat and power optimized distribution[D]. Hangzhou: Zhejiang University, 2020.
|
[4] |
DUDZIK W, NALEPA J, KAWULOK M. Evolving data-adaptive support vector machines for binary classification[J]. Knowledge-Based Systems, 2021, 227: 107221.
|
[5] |
YANG J, ZHANG T Z, HONG J C, et al. Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle[J]. Energy, 2021, 233: 121221.
|
[6] |
IMANI M. Electrical load-temperature CNN for residential load forecasting[J]. Energy, 2021, 227: 120480.
|
[7] |
KUMAR D, MATHUR H D, BHANOT S, et al. Forecasting of solar and wind power using LSTM RNN for load frequency control in isolated microgrid[J]. International Journal of Modelling and Simulation, 2021, 41(4): 311-323.
doi: 10.1080/02286203.2020.1767840
URL
|
[8] |
REZAEE M J, DADKHAH M, FALAHINIA M. Integrating neuro-fuzzy system and evolutionary optimization algorithms for short-term power generation forecasting[J]. International Journal of Energy Sector Management, 2019, 13(4): 828-845.
doi: 10.1108/IJESM-09-2018-0015
URL
|
[9] |
KARABIBER A, ALÇIN Ö F. Short term PV power estimation by means of extreme learning machine and support vector machine[C]// 2019 7th International Istanbul Smart Grids and Cities Congress and Fair. Istanbul, Turkey: IEEE, 2019: 41-44.
|
[10] |
TAN Z F, DE G, LI M L, et al. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine[J]. Journal of Cleaner Production, 2020, 248: 119252.
|
[11] |
ZYMEŁKA P, SZEGA M. Short-term scheduling of gas-fired CHP plant with thermal storage using optimization algorithm and forecasting models[J]. Energy Conversion and Management, 2021, 231: 113860.
|
[12] |
刘亚珲, 赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4444-4451.
|
|
LIU Yahui, ZHAO Qian. Ultra-short-term power load forecasting based on cluster empirical mode decomposition of CNN-LSTM[J]. Power System Technology, 2021, 45(11): 4444-4451.
|
[13] |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.
|
|
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137.
|
[14] |
OKAMURA H, OSADA Y, NISHIJIMA S, et al. Novel robust time series analysis for long-term and short-term prediction[J]. Scientific Reports, 2021, 11: 11938.
doi: 10.1038/s41598-021-91327-8
pmid: 34099758
|
[15] |
FENG G L, ZHANG L Y, YANG J H, et al. Long-term prediction of time series using fuzzy cognitive maps[J]. Engineering Applications of Artificial Intelligence, 2021, 102: 104274.
|
[16] |
ZHANG G, BAI X Q, WANG Y X. Short-time multi-energy load forecasting method based on CNN-Seq2Seq model with attention mechanism[J]. Machine Learning With Applications, 2021, 5: 100064.
|
[17] |
JIN Y L, TAN E L, LI L, et al. Hybrid traffic forecasting model with fusion of multiple spatial toll collection data and remote microwave sensor data[J]. IEEE Access, 2018(6): 79211-79221.
|
[18] |
YANG Y R, XIONG Q Y, WU C, et al. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism[J]. Environmental Science and Pollution Research International, 2021, 28(39): 55129-55139.
doi: 10.1007/s11356-021-14687-8
pmid: 34129164
|
[19] |
BOMMISETTY R M, PRAKASH O, KHARE A. Keyframe extraction using Pearson correlation coefficient and color moments[J]. Multimedia Systems, 2020, 26(3): 267-299.
doi: 10.1007/s00530-019-00642-8
|
[20] |
CHEN Q, ZHANG W Y, ZHU K, et al. A novel trilinear deep residual network with self-adaptive Dropout method for short-term load forecasting[J]. Expert Systems With Applications, 2021, 182: 115272.
|
[21] |
张珂, 杨歆豪, 张嘉慧, 等. 基于高次指数平滑动态边界限制的深度学习优化算法[J]. 信息与控制, 2021, 50(6): 685-693.
doi: 10.13976/j.cnki.xk.2021.0522
|
|
ZHANG Ke, YANG Xinhao, ZHANG Jiahui, et al. Deep learning optimization algorithm based on high order exponential smoothing dynamic boundary constraint[J]. Information and Control, 2021, 50(6): 685-693.
doi: 10.13976/j.cnki.xk.2021.0522
|