[1] |
CUI P, WANG X, PEI J, et al. A survey on network embedding[EB/OL]. (2017-11-23)[2019-12-22]. https://arxiv.org/abs/1711.08752
|
[2] |
涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学: 信息科学, 2017, 47(8):980-996.
|
|
TU Cunchao, YANG Cheng, LIU Zhiyuan, et al. Network representation learning: An overview[J]. Scientia Sinica (Informationis), 2017, 47(8):980-996.
|
[3] |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining-KDD' 14 New York, NY, USA: ACM Press, 2014: 701-710.
|
[4] |
GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM Press, 2016: 855-864.
|
[5] |
ZHU D Y, CUI P, WANG D X, et al. Deep variational network embedding in Wasserstein space[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY,USA: ACM Press, 2018: 2827-2836.
|
[6] |
TANG J, QU M, WANG M Z, et al. LINE: Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web-WWW '15 New York, NY, USA: ACM Press, 2015: 1067-1077.
|
[7] |
FU T Y, LEE W C, LEI Z. HIN2Vec: Explore meta-paths in heterogeneous information networks for representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management New York, NY, USA: ACM Press, 2017: 1797-1806.
|
[8] |
DONG Y X, CHAWLA N V, SWAMI A. Metapath2vec: Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: SACM Press, 2017: 135-144.
|
[9] |
TANG J, QU M, MEI Q Z. PTE: Predictive text embedding through large-scale heterogeneous text networks[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD '15. New York, NY, USA: ACM Press, 2015: 1165-1174.
|
[10] |
XU L C, WEI X K, CAO J N, et al. Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining-WSDM '17. New York, NY, USA: ACM Press, 2017: 741-749.
|
[11] |
CHANG S Y, HAN W, TANG J L, et al. Heterogeneous network embedding via deep architectures[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD '15. New York, NY, USA: ACM Press, 2015: 119-128.
|
[12] |
WANG H W, ZHANG F Z, HOU M, et al. SHINE: Signed heterogeneous information network embedding for sentiment link prediction[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining-WSDM '18 New York, NY, USA: ACM Press, 2018: 592-600.
|
[13] |
QU M, TANG J, HAN J W. Curriculum learning for heterogeneous star network embedding via deep reinforcement learning[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining-WSDM '18. New York, NY, USA: ACM Press, 2018: 468-476.
|
[14] |
WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//The World Wide Web Conference. New York, NY, USA: ACM Press, 2019: 2022-2032.
|
[15] |
ZHANG C X, SONG D J, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA: ACM Press, 2019: 793-803.
|
[16] |
CEN Y K, ZOU X, ZHANG J W, et al. Representation learning for attributed multiplex heterogeneous network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA: ACM Press, 2019: 1358-1368.
|
[17] |
HU B B, ZHANG Z Q, SHI C, et al. Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:946-953.
doi: 10.1609/aaai.v33i01.3301946
URL
|
[18] |
SHI C, LI Y T, ZHANG J W, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1):17-37.
doi: 10.1109/TKDE.2016.2598561
URL
|
[19] |
SUN Y, HAN J, YAN X, et al. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4(11):992-1003.
doi: 10.14778/3402707.3402736
URL
|
[20] |
KINGMA D P, WELLING M. Auto-encoding variational bayes[EB/OL].(2014-05-01) [2019-12-22]. https://arxiv.org/abs/1312.6114 .
|
[21] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2014-05-01) [2019-12-22]. https://arxiv.org/abs/1706.03762 .
|
[22] |
SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2):357-370.
doi: 10.1109/TKDE.2018.2833443
URL
|