|
基于神经网络的蒙特卡罗可靠性分析方法
陈松坤,王德禹
2018,52 (6):
687-692.
doi: 10.16183/j.cnki.jsjtu.2018.06.009
在结构可靠性分析中,蒙特卡罗(MC)是最准确的方法,但是对大量样本点的精确计算限制了它在工程实际中的应用.为了减少分析次数,以BP(Back Propagation)神经网络技术为基础,提出了一种改进的MC方法(BP-MC).该方法通过进行实验设计(DOE)构建BP模型,以权重因子和到失效面的距离作为筛选准则,从MC样本点中筛选出失效面附近的点添加至训练集,重新训练BP模型直至满足收敛准则.随后以该BP模型识别样本点是否处于失效域,从而计算结构的失效概率.最后,以数学模型和加筋板极限强度可靠性计算为例,验证了BP-MC算法的准确与高效.
参考文献 |
相关文章 |
计量指标
|