微型直接甲醇燃料电池(μDMFC)具有能量密度高、可便携使用、快速补能以及环境友好等优点.然而,由于膜电极在电化学反应中会退化,μDMFC的有效使用寿命有限,所以需要对其健康状态与剩余使用寿命进行评估,为燃料电池改性和控制策略提供决策支持.在结合数据驱动和机理模型预测方法的基础上,针对动态运行工况,提出一种基于等效电路模型(ECM)的μDMFC剩余使用寿命预测方法.在燃料电池的性能退化指标中,电池输出电压可以被实时监测从而获得电池的退化趋势,但这一指标无法单独提供精确的预测结果.通过测量电化学阻抗谱并结合ECM可以得到电池内部阻抗等深层信息,但这些深层信息不易被实时监测,通常只能低频离线测量.此外,燃料电池在实际应用中多处于变工况状态,其退化趋势和使用寿命受工作环境影响,传统基于电压退化趋势回归的预测方法无法应对工况的动态变化.因此,可通过定期离线获取内部退化参量建立预测模型.实验结果表明:与传统数据驱动的方法相比,基于内部退化参量的预测方法能更好地适应变工况环境,在燃料电池剩余使用寿命预测中具有更好的性能.