上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (8): 1216-1224.doi: 10.16183/j.cnki.jsjtu.2023.491
• 电子信息与电气工程 • 上一篇
张志远1, 胡冀苏2, 张跃跃3, 钱旭升2, 周志勇2, 戴亚康1,2(
)
收稿日期:2023-09-25
修回日期:2023-11-08
接受日期:2023-11-24
出版日期:2025-08-28
发布日期:2025-08-26
通讯作者:
戴亚康
E-mail:daiyk@sibet.ac.cn
作者简介:张志远(1999—),硕士生,从事医学影像分析研究.
基金资助:
ZHANG Zhiyuan1, HU Jisu2, ZHANG Yueyue3, QIAN Xusheng2, ZHOU Zhiyong2, DAI Yakang1,2(
)
Received:2023-09-25
Revised:2023-11-08
Accepted:2023-11-24
Online:2025-08-28
Published:2025-08-26
Contact:
DAI Yakang
E-mail:daiyk@sibet.ac.cn
摘要:
基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和 (91.86±2.18)%,优于经典的单任务分类方法和多任务方法.
中图分类号:
张志远, 胡冀苏, 张跃跃, 钱旭升, 周志勇, 戴亚康. 注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测[J]. 上海交通大学学报, 2025, 59(8): 1216-1224.
ZHANG Zhiyuan, HU Jisu, ZHANG Yueyue, QIAN Xusheng, ZHOU Zhiyong, DAI Yakang. Attention-Guided Multi-Task Learning for Prostate Cancer Pelvic Lymph Node Metastasis Prediction[J]. Journal of Shanghai Jiao Tong University, 2025, 59(8): 1216-1224.
表1
所提方法不同组件的消融分析
| 方法 | (平均值±方差)/% | |||||
|---|---|---|---|---|---|---|
| AUPRC | AUROC | SEN | SPE | ACC | F1 | |
| 基线 | 78.91±6.07 | 90.11±3.21 | 67.02±10.42 | 91.27±2.66 | 84.37±3.99 | 70.73±7.94 |
| 基线+MBALKA | 83.26±4.13 | 91.13±1.79 | 78.07±4.85 | 86.46±6.01 | 84.06±4.48 | 73.15±5.94 |
| 基线+MSFIFA | 81.16±5.21 | 90.82±1.70 | 74.74±15.09 | 87.74±6.22 | 84.04±2.83 | 72.96±6.47 |
| 基线+MBALKA+MSFIFA | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
表3
所提方法与其他经典单任务分类方法对比
| 方法 | (平均值±方差)/% | |||||
|---|---|---|---|---|---|---|
| AUPRC | AUROC | SEN | SPE | ACC | F1 | |
| CBAMResNet50[ | 78.83±5.01 | 89.33±3.68 | 58.25±12.11 | 90.79±5.12 | 81.55±4.44 | 63.88±9.64 |
| DenseNet121[ | 82.03±3.38 | 90.24±1.70 | 67.08±11.58 | 90.35±6.25 | 83.73±2.76 | 69.87±5.14 |
| EfficientNet[ | 80.10±6.68 | 88.25±3.84 | 64.74±5.55 | 87.36±11.00 | 80.93±8.67 | 66.82±10.87 |
| InceptionV4[ | 83.15±2.13 | 90.31±1.21 | 78.01±9.64 | 81.71±10.11 | 80.67±6.28 | 70.02±6.34 |
| SeResNet50[ | 83.30±4.80 | 90.30±3.18 | 73.63±2.41 | 92.14±4.50 | 86.88±3.58 | 76.34±5.13 |
| 本文方法 | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
表4
所提方法与其他3种多任务方法对比
| 方法 | (平均值±方差)/% | |||||
|---|---|---|---|---|---|---|
| AUPRC | AUROC | SEN | SPE | ACC | F1 | |
| CMSVNet[ | 82.68±4.53 | 89.81±2.42 | 81.29±8.49 | 80.32±6.49 | 80.62±2.44 | 70.49±1.49 |
| MTTU-Net[ | 81.80±6.53 | 91.65±2.41 | 84.62±11.37 | 85.07±11.00 | 84.96±5.79 | 76.58±5.30 |
| PKAF-Net[ | 78.68±5.16 | 88.52±2.03 | 69.12±11.76 | 91.29±5.08 | 85.00±2.10 | 72.09±4.67 |
| 多任务 (不确定权重) | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
| [1] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA: A Cancer Journal for Clinicians, 2022, 72(1): 7-33. |
| [2] |
WILCZAK W, WITTMER C, CLAUDITZ T, et al. Marked prognostic impact of minimal lymphatic tumor spread in prostate cancer[J]. European Urology, 2018, 74(3): 376-386.
doi: S0302-2838(18)30423-8 pmid: 29908878 |
| [3] | 蒋璋栋, 吴开杰. 前列腺癌淋巴结转移分子机制的研究进展[J]. 现代泌尿外科杂志, 2022, 27(1): 79-83. |
| JIANG Zhangdong, WU Kaijie. Progress of molecular mechanism leading to lymph node metastasis in prostate cancer[J]. Journal of Modern Urology, 2022, 27(1): 79-83. | |
| [4] | YAKAR D, DEBATS O A, BOMERS J G R, et al. Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer[J]. Journal of Magnetic Resonance Imaging: JMRI, 2012, 35(1): 20-31. |
| [5] | 扶昭, 陈燕清, 赵春丽, 等. 3.0 T MR扩散加权成像ADC值及ROC曲线分析对前列腺癌淋巴结转移的诊断价值[J]. 磁共振成像, 2021, 12(2): 49-51. |
| FU Zhao, CHEN Yanqing, ZHAO Chunli, et al. Value of 3.0 T MR diffusion-weighted imaging and ROC curve in diagnosis of lymph node metastasis in patients with prostate cancer[J]. Chinese Journal of Magnetic Resonance Imaging, 2021, 12(2): 49-51. | |
| [6] |
BREMBILLA G, DELL’OGLIO P, STABILE A, et al. Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection[J]. European Radiology, 2018, 28(5): 1969-1976.
doi: 10.1007/s00330-017-5229-6 pmid: 29270644 |
| [7] | PORPIGLIA F, MANFREDI M, MELE F, et al. Indication to pelvic lymph nodes dissection for prostate cancer: The role of multiparametric magnetic resonance imaging when the risk of lymph nodes invasion according to Briganti updated nomogram is 5[J]. Prostate Cancer and Prostatic Diseases, 2018, 21(1): 85-91. |
| [8] |
FURUBAYASHI N, NEGISHI T, UOZUMI T, et al. Eliminating microscopic lymph node metastasis by performing pelvic lymph node dissection during radical prostatectomy for prostate cancer[J]. Molecular and Clinical Oncology, 2020, 12(2): 104-110.
doi: 10.3892/mco.2019.1965 pmid: 31929879 |
| [9] |
LIU X, TIAN J Y, WU J Y, et al. Utility of diffusion weighted imaging-based radiomics nomogram to predict pelvic lymph nodes metastasis in prostate cancer[J]. BMC Medical Imaging, 2022, 22(1): 190.
doi: 10.1186/s12880-022-00905-3 pmid: 36333664 |
| [10] |
ZHENG H X, MIAO Q, LIU Y K, et al. Multiparametric MRI-based radiomics model to predict pelvic lymph node invasion for patients with prostate cancer[J]. European Radiology, 2022, 32(8): 5688-5699.
doi: 10.1007/s00330-022-08625-6 pmid: 35238971 |
| [11] | HOU Y, BAO J, SONG Y, et al. Integration of clinicopathologic identification and deep transferrable image feature representation improves predictions of lymph node metastasis in prostate cancer[J]. EBioMedicine, 2021, 68: 103395. |
| [12] | ZHOU Y, CHEN H J, LI Y F, et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images[J]. Medical Image Analysis, 2021, 70: 101918. |
| [13] | CHENG J H, LIU J, KUANG H L, et al. A fully automated multimodal MRI-based multi-task learning for glioma segmentation and IDH genotyping[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1520-1532. |
| [14] | LAI H R, FU S R, ZHANG J, et al. Prior knowledge-aware fusion network for prediction of macrovascular invasion in hepatocellular carcinoma[J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2644-2657. |
| [15] | FUTREGA M, MILESI A, MARCINKIEWICZ M, et al. Optimized U-net for brain tumor segmentation[C]// International MICCAI Brainlesion Workshop. Cham: Springer, 2022: 15-29. |
| [16] | GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752. |
| [17] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems, New York, USA: Curran Associates Inc, 2017: 6000-6010. |
| [18] | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7482-7491. |
| [19] |
KLEIN S, STARING M, MURPHY K, et al. Elastix: A toolbox for intensity-based medical image registration[J]. IEEE Transactions on Medical Imaging, 2010, 29(1): 196-205.
doi: 10.1109/TMI.2009.2035616 pmid: 19923044 |
| [20] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211.
doi: 10.1038/s41592-020-01008-z pmid: 33288961 |
| [21] | SAITO T, REHMSMEIER M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets[J]. PLoS One, 2015, 10(3): e0118432. |
| [22] | LUQUE A, CARRASCO A, MARTÍN A, et al. The impact of class imbalance in classification performance metrics based on the binary confusion matrix[J]. Pattern Recognition, 2019, 91: 216-231. |
| [23] | LUO Y N, WANG Z S. An improved ResNet algorithm based on CBAM[C]// 2021 International Conference on Computer Network, Electronic and Automation. Xi’an, China: IEEE, 2021: 121-125. |
| [24] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2261-2269. |
| [25] | TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning, Long Beach, USA: PMLR, 2019: 6105-6114. |
| [26] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA: ACM, 2017: 4278-4284. |
| [27] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7132-7141. |
| [1] | 王鸿鑫, 徐德刚, 周楷文, 李林文, 温新. 数据驱动的流场稀疏数据建模[J]. 上海交通大学学报, 2025, 59(5): 684-690. |
| [2] | 包家汉, 孙德尚, 黄建中, 胡政. 基于自适应阈值的型钢精确角点FAST检测算法[J]. 上海交通大学学报, 2025, 59(5): 691-702. |
| [3] | 纪冕, 林艳萍, 王冬梅, 陈立, 马昕. 足部特征点准确定位及形态参数自动测量方法[J]. 上海交通大学学报, 2025, 59(5): 703-710. |
| [4] | 张澳圆, 胡小锋, 张亚辉. 多场景多目标动态变化下船舶小组立装焊重调度[J]. 上海交通大学学报, 2025, 59(4): 476-488. |
| [5] | 刘建欣, 潘如如, 周建. 基于欠完备字典重构的无监督织物疵点检测方法[J]. 上海交通大学学报, 2025, 59(2): 283-292. |
| [6] | 王可, 刘奕阳, 杨杰, 鲁爱国, 李哲, 徐明亮. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274-282. |
| [7] | 王宝坤, 王如路, 陈锦剑, 潘越, 王鲁杰. 基于深度学习的盾构隧道表观病害自动检测方法[J]. 上海交通大学学报, 2024, 58(11): 1716-1723. |
| [8] | 章涛, 张雪瑞, 陈勇, 钟科林, 罗其俊. 面向民机可视导航的场面多尺度目标检测[J]. 上海交通大学学报, 2024, 58(11): 1816-1825. |
| [9] | 牛国臣, 孙翔宇, 苑峥岩. 基于双流特征提取的车路协同感知方法[J]. 上海交通大学学报, 2024, 58(11): 1826-1834. |
| [10] | 秦菁, 文渊博, 高涛, 刘瑶. 面向多天气退化图像恢复的自注意力扩散模型[J]. 上海交通大学学报, 2024, 58(10): 1606-1617. |
| [11] | 尤丽珏, 焦圣品, 李小勇. 医疗PACS影像系统的数据存储性能优化[J]. 上海交通大学学报, 2024, 58(10): 1629-1636. |
| [12] | 李春喜, 乔涵哲, 姚刚, 姜淏予, 崔向科, 葛泉波. 基于RBF-BLS面向电动汽车低碳安全出行的SOH估计方法[J]. 上海交通大学学报, 2024, 58(9): 1454-1464. |
| [13] | 胡志强, 刘鸣飞, 李琦, 李心雨, 鲍劲松. 基于多源异构数据的风机多模态装配工艺知识图谱建模[J]. 上海交通大学学报, 2024, 58(8): 1249-1263. |
| [14] | 黄鹤, 胡凯益, 杨澜, 王浩, 高涛, 王会峰. 智能行车记录仪图像去雾系统的FPGA设计[J]. 上海交通大学学报, 2024, 58(4): 565-578. |
| [15] | 许亮业, 石连星, 单蓉胜. 一种纠删码条带化数据的一致性检查方法[J]. 上海交通大学学报, 2024, 58(4): 579-584. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||