上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (8): 1216-1224.doi: 10.16183/j.cnki.jsjtu.2023.491

• 电子信息与电气工程 • 上一篇    

注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测

张志远1, 胡冀苏2, 张跃跃3, 钱旭升2, 周志勇2, 戴亚康1,2()   

  1. 1.徐州医科大学 医学影像学院, 江苏 徐州 221000
    2.中国科学院 苏州生物医学工程技术研究所, 江苏 苏州 215163
    3.苏州大学附属第二医院, 江苏 苏州 215000
  • 收稿日期:2023-09-25 修回日期:2023-11-08 接受日期:2023-11-24 出版日期:2025-08-28 发布日期:2025-08-26
  • 通讯作者: 戴亚康 E-mail:daiyk@sibet.ac.cn
  • 作者简介:张志远(1999—),硕士生,从事医学影像分析研究.
  • 基金资助:
    中国科学院青年创新促进会项目(2021324);苏州市卫健委临床重点病种诊疗专项(LCZX202001);苏州市科技计划项目(SKY2022003)

Attention-Guided Multi-Task Learning for Prostate Cancer Pelvic Lymph Node Metastasis Prediction

ZHANG Zhiyuan1, HU Jisu2, ZHANG Yueyue3, QIAN Xusheng2, ZHOU Zhiyong2, DAI Yakang1,2()   

  1. 1. School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
    2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, Jiangsu, China
    3. The Second Affiliated Hospital of Suzhou University, Suzhou 215000, Jiangsu, China
  • Received:2023-09-25 Revised:2023-11-08 Accepted:2023-11-24 Online:2025-08-28 Published:2025-08-26
  • Contact: DAI Yakang E-mail:daiyk@sibet.ac.cn

摘要:

基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和 (91.86±2.18)%,优于经典的单任务分类方法和多任务方法.

关键词: 前列腺癌盆腔淋巴结转移, 多任务学习, 多分支各向异性大核注意力模块, 多尺度特征交互融合注意力模块, 多参数磁共振

Abstract:

The prediction of pelvic lymph node metastasis (PLNM) based on quantitative preoperative magnetic resonance imaging features of prostate cancer primary tumor is an important reference for treatment planning. However, current prediction methods inadequately capture the heterogeneity within the primary tumor, resulting in a weak correlation between extracted quantitative image features and PLNM prediction. To address the aforementioned issues, an attention-guided multi-task learning network with tumor segmentation as an auxiliary task is proposed for PLNM prediction. First, within the tumor segmentation network, a multi-branch anisotropic large kernel attention module is introduced, where a larger receptive field is obtained through different branches and anisotropic large convolutional kernels, effectively capturing both local and global tumor information. Then, within the PLNM prediction network, a multi-scale feature interaction fusion attention module is introduced to hierarchically fuse and select features from multiple scales. The experimental results on a dataset of 320 cases demonstrate that the area under the precision-recall curve and the area under the receiver operating characteristic curve of the method proposed are (85.44±2.04)% and (91.86±2.18)%, which are superior to state-of-the-art methods and multi-task approaches.

Key words: prostate cancer pelvic lymph node metastasis (PLNM), multi-task learning, multi-branch anisotropic large kernel attention, multi-scale feature interaction fusion attention, multiparametric magnetic resonance imaging (mpMRI)

中图分类号: