上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (11): 1716-1723.doi: 10.16183/j.cnki.jsjtu.2023.089
收稿日期:
2023-03-14
修回日期:
2023-05-22
接受日期:
2023-05-29
出版日期:
2024-11-28
发布日期:
2024-12-02
通讯作者:
陈锦剑,教授,博士生导师;E-mail:作者简介:
王宝坤(1998—),硕士生,从事隧道病害图像处理与算法研究.
基金资助:
WANG Baokun1, WANG Rulu2, CHEN Jinjian1(), PAN Yue1, WANG Lujie2
Received:
2023-03-14
Revised:
2023-05-22
Accepted:
2023-05-29
Online:
2024-11-28
Published:
2024-12-02
摘要:
为实现高精度像素级地铁盾构隧道表观多病害检测,提出一种基于深度学习的语义分割模型 SU-ResNet++.首先,设计基于残差单元结合注意力机制的编码器 SE-ResNet50 进行预训练,并将其作为 U-Net++ 的主干网络设计新型神经网络模型;其次,通过原始数据采集、数据预处理及人工标注,构建具有 4 500 张图片的盾构隧道表观多病害数据集;最后,将所提出的方法通过数据集进行训练、验证和测试,并应用于实际工程检测,实现了高精度像素级的病害语义分割.实验结果表明,所提出的 SU-ResNet++ 算法适用于盾构隧道病害数据检测,可以自动准确地识别病害类别及形态,病害识别精度相比传统语义分割模型有明显提高,并且满足实际工程需求.
中图分类号:
王宝坤, 王如路, 陈锦剑, 潘越, 王鲁杰. 基于深度学习的盾构隧道表观病害自动检测方法[J]. 上海交通大学学报, 2024, 58(11): 1716-1723.
WANG Baokun, WANG Rulu, CHEN Jinjian, PAN Yue, WANG Lujie. Automatic Detection Method for Surface Diseases of Shield Tunnel Based on Deep Learning[J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1716-1723.
[1] | NI F T, ZHANG J, CHEN Z Q. Pixel level crack delineation in images with convolutional feature fusion[J]. Structural Control and Health Monitoring, 2019, 26(1): e2286.1-e2286.18. |
[2] | YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109. |
[3] | LIANG X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(5): 415-430. |
[4] | LIU Y, YAO J, LU X, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338 (APR.21): 139-153. |
[5] | 刘凡, 王君锋, 陈峙宇, 等. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. |
LIU Fan, WANG Junfeng, CHEN Zhiyu, et al. Crack detection method based on parallel attention UNet[J]. Computer Research and Development, 2021, 58(8): 1718-1726. | |
[6] | ZHOU Z, ZHANG J, GONG C. Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(6): 762-780. |
[7] | CHA Y J, CHOI W, SUH G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747. |
[8] | XUE Y, LI Y. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(8): 638-654. |
[9] | 饶勇成, 韩晓健, 肖飞, 等. 基于深度学习的混凝土结构多病害检测[J]. 建筑结构, 2021, 51 (Sup.2): 1439-1445. |
RAO Yongcheng, HAN Xiaojian, XIAO Fei, et al. Multiple disease detection of concrete structures based on deep learning[J]. Building Structure, 2021, 51 (Sup.2): 1439-1445. | |
[10] | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham, Switzerland: Springer, 2018: 3-11. |
[11] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778. |
[12] |
HU J, SHEN L, SUN G, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
doi: 10.1109/TPAMI.2019.2913372 pmid: 31034408 |
[13] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks[C] //Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: NIPS, 2014: 3320-3328. |
[14] | DENG J, DONG W, RICHARD S, et al. ImageNet:A largescale hierarchical image database[C] //Proceedings of the IEEE Computer Vision and Pattern Recognition. Miami, USA:IEEE,2009:248-255. |
[15] | ZHU Q, ZHENG H, WANG Y, et al. Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm[J]. Sensors, 2020, 20(15): 43141-18. |
[16] | RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[DB/OL]. (2015-05-18)[2023-03-14]. http://arxiv.org/abs/1505.04597. |
[17] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[DB/OL]. (2015-04-10)[2023-03-14]. http://arxiv.org/abs/1409.1556. |
[18] | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[1] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[2] | 张峻宁, 苏群星, 王成, 徐超, 李一宁. 一种改进变换网络的域自适应语义分割网络[J]. 上海交通大学学报, 2021, 55(9): 1158-1168. |
[3] | 王悦行, 吴永国, 徐传刚. 基于深度迁移学习的红外舰船目标检测算法[J]. 空天防御, 2021, 4(4): 61-66. |
[4] | 姜宇迪, 胡晖, 殷跃红. 基于无监督迁移学习的电梯制动器剩余寿命预测[J]. 上海交通大学学报, 2021, 55(11): 1408-1416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||