上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (10): 1606-1617.doi: 10.16183/j.cnki.jsjtu.2023.043
收稿日期:
2023-02-10
修回日期:
2023-03-02
接受日期:
2023-03-09
出版日期:
2024-10-28
发布日期:
2024-11-01
通讯作者:
文渊博,博士生;E-mail:作者简介:
秦 菁(1975—),讲师,现主要从事信号处理及图像处理研究.
基金资助:
QIN Jing, WEN Yuanbo(), GAO Tao, LIU Yao
Received:
2023-02-10
Revised:
2023-03-02
Accepted:
2023-03-09
Online:
2024-10-28
Published:
2024-11-01
摘要:
复杂天气下的图像恢复对后续高级计算机视觉任务具有重要意义.然而,多数现有图像恢复算法仅能去除单一天气退化,鲜有针对多天气退化图像恢复的同一模型.对此,结合去噪扩散概率模型和视觉Transformer,提出一种用于多天气退化图像恢复的自注意力扩散模型.首先,利用天气退化图像作为条件来引导扩散模型反向采样生成去除退化的干净背景图像.其次,提出次空间转置自注意力噪声估计网络,利用退化图像和噪化状态来估计噪声分布,包括次空间转置自注意力机制 (STSA) 和双分组门控前馈网络 (DGGFFN).STSA利用次空间变换系数实现有效学习特征全局性长距离依赖的同时,可显著降低计算负担;DGGFFN利用双分组门控机制来增强前馈网络的非线性表征能力.实验结果表明,在5个天气退化图像数据集上,相比近来同类算法All-in-One和TransWeather,本文算法所得恢复图像的平均峰值信噪比分别提高3.68和3.08 dB,平均结构相似性分别提高2.93%和3.13%.
中图分类号:
秦菁, 文渊博, 高涛, 刘瑶. 面向多天气退化图像恢复的自注意力扩散模型[J]. 上海交通大学学报, 2024, 58(10): 1606-1617.
QIN Jing, WEN Yuanbo, GAO Tao, LIU Yao. A Transformer-Based Diffusion Model for All-in-One Weather-Degraded Image Restoration[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1606-1617.
表2
不同算法在多天气退化图像恢复任务上的定量对比
方法 | 源 | Snow100K-L PSNR/SSIM | Snow100K-M PSNR/SSIM | Snow100K-S PSNR/SSIM | Test1 PSNR/SSIM | Raindrop-A PSNR/SSIM |
---|---|---|---|---|---|---|
Uformer[ | CVPR 2022 | 26.24/0.8680 | 32.11/0.9316 | 34.00/0.9445 | 16.32/0.7565 | 30.33/0.9335 |
Restormer[ | CVPR 2022 | |||||
All-in-One[ | CVPR 2020 | 28.14/0.8901 | 30.96/0.9290 | 32.63/0.9392 | 25.87/ | |
TransWeather[ | CVPR 2022 | 30.21/0.9179 | ||||
AWIR-TDM | 31.69/0.9240 | 35.47/0.9565 | 37.16/0.9642 | 31.68/0.9347 | 32.33/0.9429 |
表3
不同算法在雪数据集Snow100K上的定量对比
方法 | 源 | Snow100K-L PSNR/SSIM | Snow100K-M PSNR/SSIM | Snow100K-S PSNR/SSIM | 平均指标 PSNR/SSIM |
---|---|---|---|---|---|
RESCAN[ | ECCV 2018 | 26.08/0.8108 | 29.95/0.8860 | 31.51/0.9032 | 29.28/0.8667 |
SPANet[ | CVPR 2019 | 23.70/0.7930 | 28.06/0.8680 | 29.92/0.8260 | 27.23/0.8290 |
DesnowNet[ | TIP 2018 | 27.17/ | 30.87/0.9409 | 32.33/0.9500 | 30.12/ |
JSTASR[ | ECCV 2020 | 25.32/0.8076 | 29.11/0.8843 | 31.40/0.9012 | 28.61/0.8644 |
SwinIR[ | CVPR 2021 | 28.18/0.8800 | 31.42/0.9284 | 33.96/ | 31.19/0.9217 |
DDMSNet[ | TIP 2021 | 28.85/0.8772 | 32.89/0.9330 | 34.34/0.9445 | 32.03/0.9182 |
TransWeather[ | CVPR 2022 | ||||
AWIR-TDM | 30.64/0.9193 | 35.26/0.9472 | 37.05/0.9680 | 34.32/0.9448 |
表5
不同算法在雨滴数据集Raindrop-A上的定量对比
方法 | 源 | Raindrop-A |
---|---|---|
PSNR/SSIM | ||
pix2pix[ | CVPR 2017 | 28.02/0.8547 |
Attn. GAN[ | CVPR 2018 | 31.59/0.9170 |
DuRN[ | CVPR 2019 | 31.24/0.9259 |
RaindropAttn[ | ICCV 2019 | 31.44/0.9263 |
SwinIR[ | CVPR 2021 | 30.82/0.9035 |
CCN[ | CVPR 2021 | 31.34/ |
IDT[ | TPAMI 2022 | |
AWIR-TDM | 32.84/0.9571 |
表6
不同算法在自然天气退化图像数据集上的定量对比
方法 | Snow NIQE/SSEQ/NIMA | RainMist NIQE/SSEQ/NIMA | RainStreak NIQE/SSEQ/NIMA | Raindrop NIQE/SSEQ/NIMA |
---|---|---|---|---|
Uformer[ | 3.395/28.31/2.644 | 4.021/26.88/3.289 | 3.771/27.19/3.376 | 4.792/34.06/4.260 |
Restormer[ | 3.267/27.90/2.570 | 3.912/ | 4.658/ | |
All-in-One[ | 3.561/29.62/2.384 | 4.253/25.20/3.419 | 3.895/27.03/3.352 | |
TransWeather[ | 3.020/ | 3.765/27.11/3.282 | 4.702/31.81/4.213 | |
AWIR-TDM | 3.752/24.23/3.965 | 3.636/ | 4.647/30.46/4.328 |
[1] |
高涛, 文渊博, 陈婷, 等. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623.
doi: 10.16183/j.cnki.jsjtu.2022.032 |
GAO Tao, WEN Yuanbo, CHEN Ting, et al. A single image deraining algorithm based on Swin Transformer[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 613-623. | |
[2] | 黄鹤, 胡凯益, 李战一, 等. 融合MCAP和GRTV正则化的无人机航拍建筑物图像去雾方法[J]. 上海交通大学学报, 2023, 57(3): 613-623. |
HUANG He, HU Kaiyi, LI Zhanyi, et al. An image dehazing method for UAV aerial photography to buildings combining MCAP and GRTV regularization[J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 613-623. | |
[3] | LI R, ROBBY T T, LOONG-FAH C. All in one bad weather removal using architectural search[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 3175-3185. |
[4] | VALANARASU J M J, YASARLA R, PATEL V M. Transweather: Transformer-based restoration of images degraded by adverse weather conditions[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 2353-2363. |
[5] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
[6] | KINGMA D P, WELLING M. Auto-encoding variational bayes[DB/OL]. (2013-12-20)[2023-02-06]. https://arxiv.org/abs/1312.6114. |
[7] | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851. |
[8] | DHARIWAL P, NICHOL A. Diffusion models beat gans on image synthesis[J]. Advances in Neural Information Processing Systems, 2021, 34: 8780-8794. |
[9] | PEEBLES W, XIE S. Scalable diffusion models with Transformers[DB/OL]. (2022-12-19)[2023-02-06]. https://arxiv.org/abs/2212.09748. |
[10] | WANG Z, CUN X, BAO J, et al. Uformer: A general u-shaped transformer for image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 17683-17693. |
[11] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 5728-5739. |
[12] | YAO T, LI Y, PAN Y, et al. Dual vision transformer[DB/OL]. (2022-07-11) [2023-02-06]. https://arxiv.org/abs/2207.04976. |
[13] | CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration[C]// Proceedings of the European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 17-33. |
[14] | LIU Y F, JAW D W, HUANG S C, et al. DesnowNet: Context-aware deep network for snow removal[J]. IEEE Transactions on Image Processing, 2018, 27(6): 3064-3073. |
[15] |
鲍先富, 强赞霞, 杨关. 功能解耦和谱特征融合的雪霾消除模型[J]. 计算机工程与应用, 2023, 59(13): 211-219.
doi: 10.3778/j.issn.1002-8331.2203-0566 |
BAO Xianfu, QIANG Zanxia, YANG Guan. Generative adverbial network for function decoupling and edge feature fusion for snow and haze elimination[J]. Computer Engineering & Applications, 2023, 59(13):211-219. | |
[16] | 柴国强, 王大为, 芦宾, 等. 基于注意机制的轻量化稠密连接网络单幅图像去雨[J]. 北京航空航天大学学报, 2022, 48(11): 2186-2192. |
CHAI Guoqiang, WANG Dawei, LU Bin, et al. Lightweight densely connected network based on attention mechanism for single-image deraining[J]. Journal of Beijing University of Aeronautics & Astronautics, 2022, 48(11): 2186-2192. | |
[17] | QIAN R, TAN R T, YANG W, et al. Attentive generative adversarial network for raindrop removal from a single image[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 2482-2491. |
[18] | CHEN H, WANG Y, GUO T, et al. Pre-trained image processing transformer[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Kuala Lumpur, Malaysia: IEEE, 2021: 12299-12310. |
[19] | LI B, LIU X, HU P, et al. All-in-one image restoration for unknown corruption[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. NewOrleans, LA, USA: IEEE, 2022: 17452-17462. |
[20] | LI R, CHEONG L F, TAN R T. Heavy rain image restoration: Integrating physics model and conditional adversarial learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 1633-1642. |
[21] | LI S, ARAUJO I B, REN W, et al. Single image deraining: A comprehensive benchmark analysis[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 3838-3847. |
[22] | LI X, WU J, LIN Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]// Proceedings of the European Conference on Computer Vision. Salty Lake City, UT, USA: Springer, 2018: 254-269. |
[23] | WANG T, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 12270-12279. |
[24] | CHEN W, FANG H, DING J, et al. JSTASR: Joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal[C]// Proceedings of the European Conference on Computer Vision. Glasgow, UK: Springer, 2020: 754-770. |
[25] | LIANG J, CAO J, SUN G, et al. Swinir: Image restoration using swin transformer[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, canada: IEEE, 2021: 1833-1844. |
[26] | ZHANG K, LI R, YU Y, et al. Deep dense multi-scale network for snow removal using semantic and depth priors[J]. IEEE Transactions on Image Processing, 2021, 30: 7419-7431. |
[27] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2223-2232. |
[28] | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Venice, Italy: IEEE, 2017: 1125-1134. |
[29] | JIANG K, WANG Z, YI P, et al. Rain-free and residue hand-in-hand: A progressive coupled network for real-time image deraining[J]. IEEE Transactions on Image Processing, 2021, 30: 7404-7418. |
[30] | ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Kuala Lumpur, Malaysia: IEEE, 2021: 14821-14831. |
[31] | LIU X, SUGANUMA M, SUN Z, et al. Dual residual networks leveraging the potential of paired operations for image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 7007-7016. |
[32] | QUAN Y, DENG S, CHEN Y, et al. Deep learning for seeing through window with raindrops[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul Korea: IEEE, 2019: 2463-2471. |
[33] | QUAN R, YU X, LIANG Y, et al. Removing raindrops and rain streaks in one go[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Kuala Lumpur, Malaysia: IEEE, 2021: 9147-9156. |
[34] | XIAO J, FU X, LIU A, et al. Image de-raining transformer[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2022: 1-18. |
[1] | 孙欣, 王思敏, 谢敬东, 江海林, 王森. 考虑多维影响因素的改进Transformer-PSO短期电价预测方法[J]. 上海交通大学学报, 2024, 58(9): 1420-1431. |
[2] | 李擎, 皇甫玉彬, 李江昀, 杨志方, 陈鹏, 王子涵. UConvTrans:全局和局部信息交互的双分支心脏图像分割[J]. 上海交通大学学报, 2023, 57(5): 570-581. |
[3] | 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623. |
[4] | 狄子琦, 王翔宇, 吴双, 周宇 . 基于Transformer架构的高超声速飞行器轨迹生成与预测算法[J]. 空天防御, 2023, 6(4): 35-41. |
[5] | 张峻宁, 苏群星, 王成, 徐超, 李一宁. 一种改进变换网络的域自适应语义分割网络[J]. 上海交通大学学报, 2021, 55(9): 1158-1168. |
[6] | 武光利, 郭振洲, 李雷霆, 王成祥. 融合FCN和LSTM的视频异常事件检测[J]. 上海交通大学学报, 2021, 55(5): 607-614. |
[7] | 蒋兴浩, 赵泽宇, 许可. 基于视觉的飞行器智能目标检测对抗攻击技术[J]. 空天防御, 2021, 4(1): 8-13. |
[8] | SONG Simeng (宋思蒙), CHEN Xiaoxin (陈孝信), QIAN Yong (钱勇), WANG Hui (王辉), ZHANG. Research on Time-Domain Transfer Impedance Measurement Technology for High Frequency Current Transformers in Partial Discharge Detection of Cables[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(1): 10-17. |
[9] | REN Fang-yu (任方宇), SI Shu-bin* (司书宾), CAI Zhi-qiang (蔡志强), ZHANG Shuai (张帅). Transformer Fault Analysis Based on Bayesian Networks and Importance Measures[J]. 上海交通大学学报(英文版), 2015, 20(3): 353-357. |
[10] | 乐志东,蒯琳萍. 应用溶解扩散模型预测钴的渗透行为[J]. 上海交通大学学报(自然版), 2014, 48(11): 1650-1654. |
[11] | 黄海洋a,b,王晴c,陈继祥b. 基于Bass模型的我国大学技术创新扩散实证分析[J]. 上海交通大学学报(自然版), 2013, 47(07): 1164-1168. |
[12] | 马波,周越. 一种新的多视角人脸跟踪算法[J]. 上海交通大学学报(自然版), 2010, 44(07): 902-0906. |
[13] | 应俊豪,张秀彬. 矿石颗粒尺度分布的双圆算法[J]. 上海交通大学学报(自然版), 2010, 44(03): 384-0388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||