上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (8): 1055-1066.doi: 10.16183/j.cnki.jsjtu.2021.433
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
收稿日期:
2021-10-29
修回日期:
2021-11-23
接受日期:
2021-12-07
出版日期:
2023-08-28
发布日期:
2023-08-31
通讯作者:
鹿盈盈,博士,讲师;E-mail: 作者简介:
范 超(1997-),硕士生,研究方向为内燃机燃烧与排放控制.
基金资助:
FAN Chao1, LU Yingying1(), LIU Yize2
Received:
2021-10-29
Revised:
2021-11-23
Accepted:
2021-12-07
Online:
2023-08-28
Published:
2023-08-31
摘要:
利用试验结合数值模拟的手段研究重型柴油机低负荷转速拓展下,多次喷油策略对预混充量压燃(PCCI)燃烧的影响,得出重型柴油机低负荷喷雾燃烧的普适优化方向:喷油定时应与燃烧室形状配合,使油、气、室三者结合,最大程度地利用燃烧室的形状优势;转速升高后采用多次喷油策略能够克服喷油持续期延长带来的喷油速率降低、油气混合程度降低等缺陷.优化喷油策略后,低转速单次喷油工况下NOx排放量降低38%,碳烟排放量降低1个数量级,指示热效率提高8.66%;中转速单次喷油工况下,在指示热效率保持不变的情况下NOx排放量降低59.3%,碳烟排放量降低70%;高转速单次喷油工况下,指示热效率和NOx排放量略有升高,碳烟排放量显著降低.此外,研究发现,随着转速的提升,多次喷油策略对指示热效率与排放量的影响逐渐增强,多次喷油策略的优化效果相对低转速时更加明显.
中图分类号:
范超, 鹿盈盈, 刘一泽. 转速拓展下喷油策略对柴油机低负荷预混燃烧的影响[J]. 上海交通大学学报, 2023, 57(8): 1055-1066.
FAN Chao, LU Yingying, LIU Yize. Effect of Injection Strategy on Low Load Premixed Combustion of a Diesel Engine in Engine Speed Extension[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1055-1066.
表2
各标定工况喷油参数
S/ (r·min-1) | 工况 | R/% | φCA/(°) (P2SOI/D2/P1SOI/ D1/MSOI/D) | E/% |
---|---|---|---|---|
1 000 | 1 | 0 | 0/0/0/0/-30/4.1 | 43.19 |
2 | 0 | 0/0/0/0/-25/4.1 | 45.24 | |
3 | 0 | 0/0/0/0/-15/4.1 | 51.99 | |
4 | 20 | 0/0/-30/0.6/-20/2.1 | 46.35 | |
5 | 30 | 0/0/-30/0.9/-20/1.8 | 45.19 | |
6 | 40 | 0/0/-30/1.1/-20/1.6 | 45.25 | |
7 | 50 | 0/0/-30/1.3/-20/1.3 | 45.96 | |
8 | 60 | 0/0/-30/1.6/-20/1.1 | 42.08 | |
9 | 70 | 0/0/-30/1.8/-20/0.9 | 52.00 | |
1 400 | 1 | 0 | 0/0/0/0/-30/5.8 | 42.96 |
2 | 0 | 0/0/0/0/-25/5.8 | 42.72 | |
3 | 0 | 0/0/0/0/-15/5.8 | 48.08 | |
4 | 20 | 0/0/-30/1/-20/3.6 | 44.47 | |
5 | 30 | 0/0/-30/1.5/-20/3.1 | 45.14 | |
6 | 40 | 0/0/-30/1.9/-20/2.7 | 44.83 | |
7 | 50 | 0/0/-30/2.3/-20/2.3 | 44.50 | |
8 | 60 | 0/0/-30/2.7/-20/1.9 | 44.68 | |
9 | 70 | 0/0/-30/3.1/-20/1.5 | 50.50 |
表3
低转速优化方案
方案 | R/% | φCA/(°) (P2SOI/D2/P1SOI/D1/MSOI/D) | N/[g·(kW·h)-1] | C/[g·(kW·h)-1] | E/% |
---|---|---|---|---|---|
基准工况 | 0 | 0/0/0/0/-15/4.1 | 5.92×10-2 | 1.02×10-4 | 51.99 |
对比工况1 | 60 | 0/0/-30/1.6/-20/1.1 | 6.65×10-2 | 4.21×10-4 | 32.92 |
对比工况2 | 40 | 0/0/-30/1.1/-20/1.6 | 7.87×10-2 | 7.77×10-4 | 39.02 |
优化方案1 | 0 | 0/0/0/0/-11/4.1 | 1.89×10-2 | 2.21×10-4 | 54.40 |
优化方案2 | 60 | 0/0/-21/1.6/-11/1.1 | 1.10×10-1 | 4.99×10-5 | 46.58 |
优化方案3 | 40 | 0/0/-20/1.1/-10/1.6 | 3.64×10-2 | 1.13×10-5 | 60.65 |
优化方案4 | 20+20 | -20/0.6/-13/0.6/10/1.6 | 2.76×10-2 | 2.73×10-5 | 60.00 |
表4
中转速优化方案
方案 | R/% | φCA/(°) (P2SOI/D2/P1SOI/D1/MSOI/D) | N/[(g·(kW·h)-1] | C/[g·(kW·h)-1] | E/% |
---|---|---|---|---|---|
基准工况 | 0 | 0/0/0/0/-15/5.8 | 3.91×10-2 | 2.09×10-3 | 48.08 |
对比工况1 | 50 | 0/0/-30/2.3/-20/2.3 | 3.02×10-2 | 2.21×10-3 | 46.64 |
对比工况2 | 40 | 0/0/-30/1.9/-20/2.7 | 4.09×10-2 | 2.20×10-3 | 41.34 |
优化方案1 | 40 | 0/0/-25/1.9/-15/2.7 | 4.42×10-2 | 8.24×10-4 | 45.58 |
优化方案2 | 40 | 0/0/-20/1.9/-10/2.7 | 2.34×10-2 | 8.69×10-4 | 47.62 |
优化方案3 | 50 | 0/0/-20/2.3/-10/2.3 | 2.04×10-2 | 3.44×10-4 | 47.77 |
优化方案4 | 25+25 | -20/0.6/-12/0.6/-10/2.7 | 1.59×10-2 | 6.18×10-4 | 48.41 |
表5
高转速方案比较
方案 | R/% | φCA/(°) (P2SOI/D2/P1SOI/D1/MSOI/D) | N/[g·(kW·h)-1] | C/[g·(kW·h)-1] | E/% |
---|---|---|---|---|---|
1 | 0 | 0/0/0/0/-30/7.4 | 2.18×10-2 | 2.06×10-3 | 42.14 |
2 | 0 | 0/0/0/0/-25/7.4 | 2.02×10-2 | 3.68×10-3 | 42.62 |
3 | 0 | 0/0/0/0/-15/7.4 | 1.06×10-2 | 1.01×10-2 | 47.98 |
4 | 40 | 0/0/-30/3/-20/4.6 | 1.97×10-2 | 6.7×10-3 | 48.84 |
5 | 50 | 0/0/-30/3.7/-20/3.9 | 1.99×10-2 | 7.09×10-3 | 48.61 |
6 | 40 | 0/0/-25/3/-15/4.6 | 1.64×10-2 | 3.37×10-3 | 49.55 |
7 | 50 | 0/0/-25/3.7/-15/3.9 | 1.88×10-2 | 3.08×10-3 | 49.83 |
8 | 20+20 | -25/1.9/-18/1.9/-15/3.9 | 1.32×10-2 | 3.27×10-3 | 48.88 |
9 | 25+25 | -25/1.9/-18/1.9/-15/3.9 | 1.34×10-2 | 5.67×10-3 | 48.70 |
[1] |
DAS P, SUBBARAO P M V, SUBRAHMANYAM J P. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy[J]. Energy Conversion and Management, 2015, 95: 248-258.
doi: 10.1016/j.enconman.2015.02.018 URL |
[2] |
LU Y Y, SU W H. Effects of the injection parameters on the premixed charge compression ignition combustion and the emissions in a heavy-duty diesel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(7): 915-926.
doi: 10.1177/0954407017701023 URL |
[3] | 梅德清, 涂立志, 雎志轩, 等. 不同喷油正时的柴油机PCCI燃烧过程数值模拟[J]. 江苏大学学报(自然科学版), 2018, 39(1): 7-13. |
MEI Deqing, TU Lizhi, JU Zhixuan, et al. Numerical simulation of PCCI combustion in diesel engine with different injection timing[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(1): 7-13. | |
[4] |
JAIN A, SINGH A P, AGARWAL A K. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine[J]. Applied Energy, 2017, 190: 658-669.
doi: 10.1016/j.apenergy.2016.12.164 URL |
[5] |
DOLL U, BARRO C, TODINO M, et al. Impact of a split injection strategy on mixing, ignition and combustion behavior in premixed charge compression ignition combustion[J]. Fuel, 2021, 294: 120511.
doi: 10.1016/j.fuel.2021.120511 URL |
[6] |
LI M H, LIU G F, LIU X R, et al. Performance of a direct-injection natural gas engine with multiple injection strategies[J]. Energy, 2019, 189: 116363.
doi: 10.1016/j.energy.2019.116363 URL |
[7] |
D’AMBROSIO S, FERRARI A. Potential of multiple injection strategies implementing the after shot and optimized with the design of experiments procedure to improve diesel engine emissions and performance[J]. Applied Energy, 2015, 155: 933-946.
doi: 10.1016/j.apenergy.2015.05.124 URL |
[8] | MORENO C J, STENLAAS O, TUNESTAL P. Influence of small pilot on main injection in a heavy-duty diesel engine[C]//WcxTM17:Sae World Congress Experience. Warrendale, PA, USA: SAE, 2017. |
[9] | 王军, 金毅, 张幽彤, 等. 柴油机典型工况的电控喷油器多次喷射分配[J]. 汽车工程, 2020, 42(2): 157-163. |
WANG Jun, JIN Yi, ZHANG Youtong, et al. Multiple injection distribution of electronically controlled injector in typical working conditions of diesel engine[J]. Automotive Engineering, 2020, 42(2): 157-163. | |
[10] | SU T F, PATTERSON M A, REITZ R D, et al. Experimental and numerical studies of high pressure multiple injection sprays[C]//International Congress & Exposition. Warrendale, PA, USA: SAE, 1996: 93-104. |
[11] | O’ROURKE P J. Collective drop effects on vaporizing liquid sprays[D]. Princeton, USA: Princeton University, 1981. |
[12] | SCHMIDT D P, RUTLAND C J. A new droplet collision algorithm[J]. Journal of Computational Physics, 2000, 164(1): 62-80. |
[13] |
LIU H, YAN Y A, JIA M, et al. An analytical solution for wall film heating and evaporation[J]. International Communications in Heat and Mass Transfer, 2017, 87: 125-131.
doi: 10.1016/j.icheatmasstransfer.2017.07.009 URL |
[14] | Convergent Science. CONVERGE manual (v2.4)[DB/OL]. (2018-08-14)[2021-06-29]. https//convergecfd.com. |
[15] | SOM S, WANG Z, LIU W, et al. Comparison of different chemical kinetic models for biodiesel combustion[C]//ASME 2013 Internal Combustion Engine Division Fall Technical Conference. Dearborn, Michigan, USA: ASME, 2013:V002T02A004. |
[16] |
FLOWER W L, HANSON R K, KRUGER C H. Kinetics of the reaction of nitric oxide with hydrogen[J]. Symposium (International) on Combustion, 1975, 15(1): 823-832.
doi: 10.1016/S0082-0784(75)80350-X URL |
[17] | NISHIDA K, HIROYASU H. Simplified three-dimensional modeling of mixture formation and combustion in a DI diesel engine[J]. SAE Transactions, 1989, 98: 276-293. |
[18] |
HAN Z, REITZ R. Turbulence modeling of internal combustion engines using RNG κ-ε models[J]. Combustion Science and Technology, 1995, 106(4/5/6): 267-295.
doi: 10.1080/00102209508907782 URL |
[19] |
LI B Z, BRINK A, MIKKO H. Simplified model for determining local heat flux boundary conditions for slagging wall[J]. Energy and Fuels, 2009, 23(4): 3418-3422.
doi: 10.1021/ef800957k URL |
[20] | Convergent Science. CONVERGE v2.1.0 theory manual[DB/OL]. (2013-07-15)[2021-06-29]. https//convergecfd.com. |
[21] |
JU Y G. Understanding cool flames and warm flames[J]. Proceedings of the Combustion Institute, 2021, 38(1): 83-119.
doi: 10.1016/j.proci.2020.09.019 URL |
[22] |
CURRAN H J. Developing detailed chemical kinetic mechanisms for fuel combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1): 57-81.
doi: 10.1016/j.proci.2018.06.054 |
[23] | 生态环境部,国家市场监督管理总局. 重型柴油车污染物排放限值及测量方法: GB 17691—2018[S]. 北京: 中国环境科学出版社, 2018. |
Ministry of Ecological Environment, State Market Regulatory Administration. Limits and measurement methods for emissions from diesel fuelled heavy-duty vehicles(CHINA VI): GB 17691—2018[S]. Beijing: China Environment Science Press, 2018. | |
[24] | 张磊, 苏铁熊, 冯云鹏, 等. 多次喷油策略下喷油间隔对双对置发动机性能和排放的数值分析[J]. 测试技术学报, 2018, 32(1): 20-25. |
ZHANG Lei, SU Tiexiong, FENG Yunpeng, et al. Numerical investigation of the effects of injection interval of split injection strategies on combustion and emission in an opposed-piston, opposed-cylinder (OPOC)two-stroke diesel engine[J]. Journal of Test and Measurement Technology, 2018, 32(1): 20-25. |
[1] | 胡壮丽, 罗毅初, 蔡航. 城市电力行业碳排放测算方法及减碳路径[J]. 上海交通大学学报, 2024, 58(1): 82-90. |
[2] | 陈雨婷, 赵毅, 吴俊达, 孙文瑶, 夏世威. 考虑碳排放指标的配电网经济调度方法[J]. 上海交通大学学报, 2023, 57(4): 442-451. |
[3] | 陈赟, 沈浩, 王佳裕, 赵文恺, 潘智俊, 王晓慧, 肖银璟. 基于“能源大脑”的城市区域碳排放实时计算方法[J]. 上海交通大学学报, 2022, 56(9): 1111-1117. |
[4] | 王子垚, 郭凤祥, 陈俐. 基于外推高斯过程回归方法的发动机排放预测[J]. 上海交通大学学报, 2022, 56(5): 604-610. |
[5] | 邹震峰, 任枫, 李晓慈, 段海洋, 杜海浪, 黄永华. 不同增压方式对火箭燃料贮箱冷氦增压效果的影响[J]. 上海交通大学学报, 2022, 56(3): 386-394. |
[6] | 张鹏飞, 徐静怡, 郭巍, 吴蔚, 钟晨, 魏文栋. 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报, 2022, 56(3): 293-302. |
[7] | 张展鹏, 班明飞, 郭丹阳, 陈启超, 江海洋. 适用于环境-经济调度研究的燃煤机组二氧化碳排放特性模型[J]. 上海交通大学学报, 2021, 55(12): 1663-1672. |
[8] | 陈文溆乐, 向月, 彭光博, 刘友波, 刘俊勇. “双碳”目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576. |
[9] | 黄强, 郭怿, 江建华, 明波. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
[10] | 刘爱虢, 陈炫任, 杨宇东, 陈雷, 王成军. 燃料分级比例对双燃料燃烧室燃烧性能的影响[J]. 上海交通大学学报, 2020, 54(7): 756-764. |
[11] | 高深,胥昌懋,赵磊,雷凌,田强,张武高. 润滑油参数对柴油机颗粒排放成分及特性影响的试验研究[J]. 上海交通大学学报, 2019, 53(11): 1285-1293. |
[12] | 陈文浩, 夏淳, 毛克让, 陶杰, 方俊华, 黄震. 运行工况和直喷正时对双喷射汽油机颗粒物排放的影响[J]. 上海交通大学学报, 2019, 53(11): 1269-1275. |
[13] | 田强,高深,赵磊,王志宇,张武高. PAO基润滑油对柴油机颗粒排放性能的影响[J]. 上海交通大学学报, 2019, 53(10): 1187-1193. |
[14] | 林达,朱益佳,魏小栋,王志宇,张武高. 喷油参数对聚甲氧基二甲醚/柴油发动机燃烧及其 颗粒物排放的影响[J]. 上海交通大学学报(自然版), 2017, 51(7): 787-795. |
[15] | 刘晓日1,2,黎明1,张铁臣1,郑清平1,黎苏1,李国祥2. 基于热弹流混合润滑的内燃机滑动轴承零磨损[J]. 上海交通大学学报(自然版), 2017, 51(1): 62-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||