上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (8): 1067-1077.doi: 10.16183/j.cnki.jsjtu.2022.137
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
收稿日期:
2022-05-03
修回日期:
2022-11-05
接受日期:
2023-01-19
出版日期:
2023-08-28
发布日期:
2023-08-31
作者简介:
邹 琳(1970-),教授,博士生导师,从事可再生能源发电研究;E-mail:基金资助:
ZOU Lin(), YAN Yulong, TAO Fan, LIU Diwei, ZHENG Yunlong
Received:
2022-05-03
Revised:
2022-11-05
Accepted:
2023-01-19
Online:
2023-08-28
Published:
2023-08-31
摘要:
为提高风力俘能结构能量收集效率,提出一种新型的波浪锥型无叶片风力俘能结构,建立了波浪锥型风力俘能结构能量转换数学模型,采用雷诺平均N-S方程结合SST k-ω湍流模型对俘能结构涡激振动响应过程进行了数值模拟,分析了质量比、阻尼比对波浪锥型风力俘能结构涡激振动响应和风能转换效率的影响.结果表明:质量比
中图分类号:
邹琳, 闫豫龙, 陶凡, 柳迪伟, 郑云龙. 波浪锥型风力俘能结构能量转换效率[J]. 上海交通大学学报, 2023, 57(8): 1067-1077.
ZOU Lin, YAN Yulong, TAO Fan, LIU Diwei, ZHENG Yunlong. Energy Conversion Efficiency of Wavy Conical Wind Energy Capture Structure[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1067-1077.
[1] |
JAHANI K, LANGLOIS R G, AFAGH F F. Structural dynamics of offshore wind turbines: A review[J]. Ocean Engineering, 2022, 251: 111136.
doi: 10.1016/j.oceaneng.2022.111136 URL |
[2] |
CHEN W, ZHENG T, YANG D, et al. Control of wide-speed-range operation for a permanent magnet synchronous generator-based wind turbine generator at high wind speeds[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107650.
doi: 10.1016/j.ijepes.2021.107650 URL |
[3] | ADEL E. Bladeless wind turbine as wind energy possible future technology[J]. Natural Gas & Electricity, 2016, 33(4): 16-20. |
[4] |
FRANCIS S, UMESH V, SHIVAKUMAR S. Design and analysis of vortex bladeless wind turbine[J]. Materials Today: Proceedings, 2021, 47: 5584-5588.
doi: 10.1016/j.matpr.2021.03.469 URL |
[5] |
HEMON A, AMANDOLESE X, ANDRIANNE T. Energy harvesting from galloping of prisms: A wind tunnel experiment[J]. Journal of Fluids and Structures, 2017, 70: 390-402.
doi: 10.1016/j.jfluidstructs.2017.02.006 URL |
[6] | BADHURSHAH R, BHARDWAJ R, BHATTACHARYA A. Energy extraction via vortex-induced vibrations: The effect of spring bistability[J]. Journal of Fluids and Structures, 2022: 103708. |
[7] |
WANG J, GENG L, DING L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations[J]. Applied Energy, 2020, 267: 114902
doi: 10.1016/j.apenergy.2020.114902 URL |
[8] |
ZHANG B, LI B, FU S, et al. Experimental investigation of the effect of high damping on the VIV energy converter near the free surface[J]. Energy, 2022, 244: 122677.
doi: 10.1016/j.energy.2021.122677 URL |
[9] | KUMAR S A, ZHAO J, THOMPSON M C, et al. Damping effects on vortex-induced vibration of a circular cylinder and implications for power extraction[J]. Journal of Fluids & Structures, 2018, 81: 289-308. |
[10] | 李小超, 周熙林, 赵利平. 质量比和阻尼比对高阻尼涡激振动的影响[J]. 船舶力学, 2018, 22(2): 165-173. |
LI Xiaochao, ZHOU Xilin, ZHAO Liping. Effects of mass and damping ratios on VIV of a circular cylinder under high damping conditions[J]. Journal of Ship Mechanics, 2018, 22(2): 165-173. | |
[11] |
ZHENG M, HAN D, GAO S, et al. Numerical investigation of bluff body for vortex induced vibration energy harvesting[J]. Ocean Engineering, 2020, 213: 107624.
doi: 10.1016/j.oceaneng.2020.107624 URL |
[12] |
ZHAO G, XU J, DUAN K, et al. Numerical analysis of hydroenergy harvesting from vortex-induced vibrations of a cylinder with groove structures[J]. Ocean Engineering, 2020, 218: 108219.
doi: 10.1016/j.oceaneng.2020.108219 URL |
[13] |
XU W, YANG M, WANG E, et al. Performance of single-cylinder VIVACE converter for hydrokinetic energy harvesting from flow-induced vibration near a free surface[J]. Ocean Engineering, 2020, 218: 108168.
doi: 10.1016/j.oceaneng.2020.108168 URL |
[14] |
WANG J, ZHAO W, SU Z, et al. Enhancing vortex-induced vibrations of a cylinder with rod attachments for hydrokinetic power generation[J]. Mechanical Systems and Signal Processing, 2020, 145: 106912.
doi: 10.1016/j.ymssp.2020.106912 URL |
[15] |
LAM K, LIN Y F. Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2009, 620: 195-220.
doi: 10.1017/S0022112008004217 URL |
[16] |
CHIZFAHM A, YAZDI E A, EGHTESAD M. Dynamic modeling of vortex induced vibration wind turbines[J]. Renewable Energy, 2018, 121: 632-643.
doi: 10.1016/j.renene.2018.01.038 URL |
[17] | 邹琳, 秦傲, 杨耀宗, 等. 波浪锥型圆柱流固耦合振动机理研究[J]. 振动与冲击, 2022, 41(3): 18-26. |
ZOU Lin, QIN Ao, YANG Yaozong, et al. Fluid-structure coupled vibration mechanism of wave conical cylinder[J]. Journal of Vibration and Shock, 2022, 41(3): 18-26. | |
[18] |
KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455-472.
doi: 10.1006/jfls.1996.0031 URL |
[19] |
KHALAK A, WILLIAMSON C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11(8): 973-982.
doi: 10.1006/jfls.1997.0110 URL |
[20] |
UENAL U, ATLAR M, GOEREN O. Effect of turbulence modelling on the computation of the near-wake flow of a circular cylinder[J]. Ocean Engineering, 2010, 37(4): 387-399.
doi: 10.1016/j.oceaneng.2009.12.007 URL |
[21] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994: 1598-1605. |
[22] | 杨耀宗. 波浪锥型圆柱流固耦合振动机理的研究[D]. 武汉: 武汉理工大学, 2020. |
YANG Yaozong. Study on the fluid-solid coupling vibration mechanism of wavy cone cylinder[D]. Wuhan: Wuhan University of Technology, 2020. | |
[23] |
WEN Q, HE X, LU Z, et al. A comprehensive review of miniatured wind energy harvesters[J]. Nano Materials Science, 2021, 3(2): 170-185.
doi: 10.1016/j.nanoms.2021.04.001 URL |
[1] | 孙攀旭, 杨红, 赵志明, 刘庆林. 基于复阻尼模型等效的黏性阻尼模型时域计算方法[J]. 上海交通大学学报, 2021, 55(6): 672-680. |
[2] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
[3] | 张波涛,朱晔晨,梅勇,龚圣捷. 平直条带流致振动特性实验及其数值模拟研究[J]. 上海交通大学学报, 2020, 54(1): 100-105. |
[4] | 袁昱超,薛鸿祥,唐文勇. 计及平台垂荡的立管涡激振动模拟与试验验证[J]. 上海交通大学学报(自然版), 2019, 53(4): 480-487. |
[5] | 端木玉, 陈建平, 万德成. 深海串列立管涡激振动的干涉分析[J]. 海洋工程装备与技术, 2019, 6(1): 438-443. |
[6] | 赵 帆, 刘 洋, 时 晨. 仙人掌型截面圆柱体群涡激振动响应的水槽试验研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 19-25. |
[7] | 高云1, 2,郑文龙1,熊友明1,邹丽3. 不同表面粗糙度下圆柱体涡激振动响应特性数值研究[J]. 上海交通大学学报(自然版), 2018, 52(4): 419-428. |
[8] | 刘玉玺, 黄怀州, 刘钊. 张力腿平台在位期间张力腿涡激振动疲劳分析[J]. 海洋工程装备与技术, 2018, 5(3): 186-190. |
[9] | 陈刚, 程永明, 徐爱进, 王钰涵. 中国南海Spar平台悬链线立管的涡激振动研究[J]. 海洋工程装备与技术, 2018, 5(3): 181-185. |
[10] | 倪问池1,2,康庄1,张橙1,张立健1. 运用修正剪应力输运湍流模型模拟双自由度涡激振动[J]. 上海交通大学学报(自然版), 2017, 51(7): 819-825. |
[11] | 陈东阳1,ABBAS L K1,王国平1,芮筱亭1,陆卫杰2. 复合材料立管涡激振动数值计算[J]. 上海交通大学学报(自然版), 2017, 51(4): 495-. |
[12] | 刘勇1,陈炉云2. 涡激振动对管道液固两相流流场的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 485-. |
[13] | 陈炉云1,李磊鑫1,2,杨念1. 考虑预应力分布的立管涡激振动特性分析[J]. 上海交通大学学报(自然版), 2017, 51(4): 476-. |
[14] | 周长城1,于曰伟1,赵雷雷1,2. 地铁二系垂向悬挂系统最佳阻尼比的解析计算[J]. 上海交通大学学报(自然版), 2017, 51(3): 353-. |
[15] | 蒋科, 张德华, 戚昱, 苏仰旋, 赵毅, 田润红. 亚临界雷诺数条件下圆柱绕流特性研究[J]. 海洋工程装备与技术, 2017, 4(1): 37-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||