上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (5): 604-610.doi: 10.16183/j.cnki.jsjtu.2021.231
收稿日期:
2021-06-29
出版日期:
2022-05-28
发布日期:
2022-06-07
通讯作者:
陈俐
E-mail:li.h.chen@sjtu.edu.cn
作者简介:
王子垚(1996-),男,河南省郑州市人,硕士生,主要从事发动机排放预测、高斯过程回归等研究.
WANG Ziyao, GUO Fengxiang, CHEN Li()
Received:
2021-06-29
Online:
2022-05-28
Published:
2022-06-07
Contact:
CHEN Li
E-mail:li.h.chen@sjtu.edu.cn
摘要:
为了提高训练集范围之外行驶工况的预测精度,提出外推高斯过程回归(GPR)方法.首先,采用训练集数据对GPR模型进行预训练,然后在正负3个标准差之间均匀采样构建宽域输入集,以该输入集的预测方差均值最小为目标优化GPR模型超参数.某直喷汽油机转毂试验的结果表明,外推GPR的平均绝对误差为0.53411,比传统GPR降低24.27%,比反向传播神经网络降低36.32%.所提方法可为降低试验成本,提高实际行驶过程排放预测精度提供参考.
中图分类号:
王子垚, 郭凤祥, 陈俐. 基于外推高斯过程回归方法的发动机排放预测[J]. 上海交通大学学报, 2022, 56(5): 604-610.
WANG Ziyao, GUO Fengxiang, CHEN Li. Engine Emission Prediction Based on Extrapolated Gaussian Process Regression Method[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 604-610.
[1] | 张文. 基于运行工况的发动机基本标定研究[D]. 上海: 上海交通大学, 2019. |
ZHANG Wen. Research on basic calibration of engine based on operating conditions[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[2] |
TURKSON R F, YAN F W, ALI M K A, et al. Artificial neural network applications in the calibration of spark-ignition engines: An overview[J]. Engineering Science and Technology, an International Journal, 2016, 19(3): 1346-1359.
doi: 10.1016/j.jestch.2016.03.003 URL |
[3] |
YU Q, YANG Y, XIONG X, et al. Assessing the impact of multi-dimensional driving behaviors on link-level emissions based on a portable emission measurement system (PEMS)[J]. Atmospheric Pollution Research, 2021, 12(1): 414-424.
doi: 10.1016/j.apr.2020.09.022 URL |
[4] | 陈婷, 倪红, 谷雪景, 等. 中国移动源下阶段排放法规综述和分析[J]. 内燃机工程, 2018, 39(6): 24-30. |
CHEN Ting, NI Hong, GU Xuejing, et al. An update on China’s mobile source emission regulations[J]. Chinese Internal Combustion Engine Engineering, 2018, 39(6): 24-30. | |
[5] |
RAKOPOULOS C D, RAKOPOULOS D C, GIAKOUMIS E G, et al. Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction[J]. Energy Conversion and Management, 2004, 45(9/10): 1471-1495.
doi: 10.1016/j.enconman.2003.09.012 URL |
[6] | FINESSO R, SPESSA E. Real-time predictive modeling of combustion and NOx formation in diesel engines under transient conditions[DB/OL]. (2012-04-16)[2021-06-05]. https://www.sae.org/publications/technical-papers/content/2012-01-0899/. |
[7] |
LEFEBVRE A H. Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions[J]. Journal of Aircraft, 1984, 21(11): 887-898.
doi: 10.2514/3.45059 URL |
[8] | HANZEVACK E L, LONG T W, ATKINSON C M, et al. Virtual sensors for spark ignition engines using neural networks[C]// Proceedings of the 1997 American Control Conference. Albuquerque, NM, USA: IEEE, 1997: 669-673. |
[9] |
SHI C, JI C W, WANG H Y, et al. Comparative evaluation of intelligent regression algorithms for performance and emissions prediction of a hydrogen-enriched Wankel engine[J]. Fuel, 2021, 290: 120005.
doi: 10.1016/j.fuel.2020.120005 URL |
[10] |
NIU X X, YANG C L, WANG H C, et al. Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine[J]. Applied Thermal Engineering, 2017, 111: 1353-1364.
doi: 10.1016/j.applthermaleng.2016.10.042 URL |
[11] |
NALEPA J, KAWULOK M. Selecting training sets for support vector machines: A review[J]. Artificial Intelligence Review, 2019, 52(2): 857-900.
doi: 10.1007/s10462-017-9611-1 URL |
[12] | 戴金池, 庞海龙, 俞妍, 等. 基于LSTM神经网络的柴油机NOx排放预测[J]. 内燃机学报, 2020, 38(5): 457-463. |
DAI Jinchi, PANG Hailong, YU Yan, et al. Prediction of diesel engine NOx emissions based on long-short term memory neural network[J]. Transactions of CSICE, 2020, 38(5): 457-463. | |
[13] | 秦静, 郑德, 裴毅强, 等. 基于PSO-GPR的发动机性能与排放预测方法[J/OL]. 吉林大学学报(工学版). ( 2021-04-01)[2021-06-05]. https://doi.org/10.13229/j.cnki.jdxbgxb20210111. |
QIN Jing, ZHENG De, PEI Yiqiang, et al. Prediction method of engine performance and emission based on PSO-GPR[J/OL]. Journal of Jilin University (Engineering and Technology Edition). (2021-04-01)[2021-06-05]. https://doi.org/10.13229/j.cnki.jdxbgxb20210111. | |
[14] | PUKELSHEIM F. The three sigma rule[J]. The American Statistician, 1994, 48(2): 88-91. |
[15] | 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 第5版. 北京: 高等教育出版社, 2019. |
SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability theory and mathematical statistics[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
[16] | RASMUSSEN C E, WILLIAMS C. Gaussian processes for machine learning[M]. Cambridge, MA, USA: The MIT Press, 2005. |
[17] |
KLENSKE E D, ZEILINGER M N, SCHÖLKOPF B, et al. Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 110-121.
doi: 10.1109/TCST.2015.2420629 URL |
[18] | WILSON A G, ADAMS R P. Gaussian process kernels for pattern discovery and extrapolation[C]// International conference on machine learning. Atlanta, USA: PMLR, 2013: 1067-1075. |
[19] |
MOHAMAD M A, SAPSIS T P. Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems[J]. PNAS, 2018, 115(44): 11138-11143.
doi: 10.1073/pnas.1813263115 URL |
[20] | 中华人民共和国环境保护部, 中华人民共和国国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法(中国第六阶段): GB 18352.6—2016 北京: 中国环境科学出版社. 2020. |
Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Limits and measurement methods for emissions from light-duty vehicles(CHINA 6): GB 18352.6—2016[S]. Beijing: China Environment Science Press, 2020. | |
[21] |
STEINIER J, TERMONIA Y, DELTOUR J. Smoothing and differentiation of data by simplified least square procedure[J]. Analytical Chemistry, 1972, 44(11): 1906-1909.
doi: 10.1021/ac60319a045 URL |
[22] | SHLENS J. A tutorial on principal component analysis[EB/OL]. (2014-04-07) [2021-06-05]. https://arxiv.org/abs/1404.1100. |
[1] | 陈赟, 沈浩, 王佳裕, 赵文恺, 潘智俊, 王晓慧, 肖银璟. 基于“能源大脑”的城市区域碳排放实时计算方法[J]. 上海交通大学学报, 2022, 56(9): 1111-1117. |
[2] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[3] | 李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013. |
[4] | 段红燕, 唐国鑫, 盛捷, 曹孟杰, 裴磊, 田宏伟. 一种新型的疲劳强度预测模型[J]. 上海交通大学学报, 2022, 56(6): 801-808. |
[5] | 姜俊豪, 陈刚. 驾驶机器人转向操纵的动态模型预测控制方法[J]. 上海交通大学学报, 2022, 56(5): 594-603. |
[6] | 许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278. |
[7] | 张鹏飞, 徐静怡, 郭巍, 吴蔚, 钟晨, 魏文栋. 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报, 2022, 56(3): 293-302. |
[8] | 邹震峰, 任枫, 李晓慈, 段海洋, 杜海浪, 黄永华. 不同增压方式对火箭燃料贮箱冷氦增压效果的影响[J]. 上海交通大学学报, 2022, 56(3): 386-394. |
[9] | 田若岑, 张庆振, 郭云鹤, 程林. 基于禁飞区规避的高超声速飞行器再入制导律设计[J]. 空天防御, 2022, 5(2): 65-74. |
[10] | 陈志鑫, 汪怡平, 杨亚锋, 苏建军, 杨斌. 不同送风方式下大客车内飞沫传播特性研究[J]. 上海交通大学学报, 2022, 56(11): 1532-1540. |
[11] | 沈阳武, 宋兴荣, 罗紫韧, 沈非凡, 黄晟. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293. |
[12] | 沈慧, 刘世民, 许敏俊, 黄德林, 鲍劲松, 郑小虎. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报, 2022, 56(1): 70-80. |
[13] | 张亮, 屈刚, 李慧星, 金皓纯. 智能电网电力监控系统网络安全态势感知平台关键技术研究及应用[J]. 上海交通大学学报, 2021, 55(S2): 103-109. |
[14] | 巩伟峥, 许凌, 姚寅. 计及风速分布与机组惯量转化不确定性的风电场可用惯量估计[J]. 上海交通大学学报, 2021, 55(S2): 51-59. |
[15] | 王岩, 陈耀然, 韩兆龙, 周岱, 包艳. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||