上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1247-1255.doi: 10.16183/j.cnki.jsjtu.2021.144
刘庆升1,2, 薛鸿祥1,2(), 袁昱超1,2, 唐文勇1,2
收稿日期:
2021-04-30
出版日期:
2022-09-28
发布日期:
2022-10-09
通讯作者:
薛鸿祥
E-mail:hongxiangxue@sjtu.edu.cn
作者简介:
刘庆升(1990-),男,黑龙江省哈尔滨市人,博士生,从事非黏结柔性立管研究.
基金资助:
LIU Qingsheng1,2, XUE Hongxiang1,2(), YUAN Yuchao1,2, TANG Wenyong1,2
Received:
2021-04-30
Online:
2022-09-28
Published:
2022-10-09
Contact:
XUE Hongxiang
E-mail:hongxiangxue@sjtu.edu.cn
摘要:
非黏结柔性立管常用于将海底油气资源输送到平台,有时因设计需要会包含复合材料圆柱壳层结构.以一类8层的非黏结柔性立管为研究对象,分析了含有复合材料圆柱壳层结构的非黏结柔性立管的弯曲特性.提出了一种作用于非黏结柔性立管的轴对称载荷和弯曲载荷联合作用的理论模型,同时建立了计及详细几何特性的非黏结柔性立管数值模型进行了验证.分析了两种典型复合材料及其纤维体积分数对非黏结柔性立管弯曲特性的影响.理论与数值结果吻合较好,计算结果表明:非黏结柔性立管的弯曲特性受复合材料圆柱壳层轴向弹性模量影响较大,轴向弹性模量较大的复合材料会较大地增强完全滑移阶段的非黏结柔性立管的弯曲刚度.非黏结柔性立管的轴向抗拉刚度和完全滑移阶段的弯曲刚度都随着复合材料圆柱壳层的纤维体积分数增大,接近线性增强.
中图分类号:
刘庆升, 薛鸿祥, 袁昱超, 唐文勇. 含复合材料结构的非黏结柔性立管弯曲特性[J]. 上海交通大学学报, 2022, 56(9): 1247-1255.
LIU Qingsheng, XUE Hongxiang, YUAN Yuchao, TANG Wenyong. Bending Properties of Unbonded Flexible Risers with Composite Materials[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1247-1255.
[1] | 余荣华, 袁鹏斌. 海洋非粘结型柔性软管的性能结构及其研究热点[J]. 油气储运, 2016, 35(12): 1255-1260. |
YU Ronghua, YUAN Pengbin. Structure and research focus of marine unbonded flexible pipes[J]. Oil & Gas Storage and Transportation, 2016, 35(12): 1255-1260. | |
[2] | EPSZTEIN T, DEMANZE F, LEFEBVRE X, et al. New anti H2S layer for flexible pipes[C]// Offshore Technology Conference. Houston, USA: OTC, 2011. |
[3] | MALTA E R, MARTINS C D A. Finite element analysis of flexible pipes under compression[C]// International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, USA: ASME, 2014. |
[4] | 任少飞, 唐文勇, 薛鸿祥. 非黏结柔性立管骨架层失效数值计算方法[J]. 上海交通大学学报, 2016, 50(3): 466-471. |
REN Shaofei, TANG Wenyong, XUE Hongxiang. Numerical method to predict failure of carcass layer of unbonded flexible risers[J]. Journal of Shanghai Jiao Tong University, 2016, 50(3): 466-471. | |
[5] | ELIZBAR K. Theoretical modelling of unbonded flexible pipe cross-sections[D]. London: South Bank University, 2000. |
[6] |
KRAINCANIC I, KEBADZE E. Slip initiation and progression in helical armouring layers of unbonded flexible pipes and its effect on pipe bending behaviour[J]. The Journal of Strain Analysis for Engineering Design, 2001, 36(3): 265-275.
doi: 10.1243/0309324011514458 URL |
[7] |
DONG L L, HUANG Y, ZHANG Q, et al. An analytical model to predict the bending behavior of unbonded flexible pipes[J]. Journal of Ship Research, 2013, 57(3): 171-177.
doi: 10.5957/jsr.2013.57.3.171 URL |
[8] |
FÉRET J J, BOURNAZEL C L. Calculation of stresses and slip in structural layers of unbonded flexible pipes[J]. Journal of Offshore Mechanics and Arctic Engineering, 1987, 109(3): 263-269.
doi: 10.1115/1.3257019 URL |
[9] | KEBADZE E, KRAINCANIC I. Non-linear bending behaviour of offshore flexible pipes[C]// International Offshore and Polar Engineering Conference. Brest, France: ISOPE, 1999: 226-233. |
[10] |
RAMOS R J, PESCE C P. A consistent analytical model to predict the structural behavior of flexible risers subjected to combined loads[J]. Journal of Offshore Mechanics and Arctic Engineering, 2004, 126(2): 141-146.
doi: 10.1115/1.1710869 URL |
[11] | RAMOS R, PESCE C P, MARTINS C A. A new analytical expression to estimate the bending stiffness of flexible risers[C]// International Conference on Offshore Mechanics and Arctic Engineering. Honolulu, USA: ASME, 2009: 513-522. |
[12] | MAGLUTA C, ROITMAN N, VIERO P F, et al. Experimental estimation of physical properties of a flexible riser[C]// International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2001: 255-264. |
[13] | TROINA L M B, ROSA L F L, VIERO P F, et al. An experimental investigation on the bending behaviour of flexible pipes[C]// International Conference on Offshore Mechanics and Arctic Engineering. Honolulu, USA: ASME, 2009: 637-645. |
[14] |
WITZ J A. A case study in the cross-section analysis of flexible risers[J]. Marine Structures, 1996, 9(9): 885-904.
doi: 10.1016/0951-8339(95)00035-6 URL |
[15] | 刘晓媛, 薛鸿祥, 唐文勇. 轴向承载力作用下非粘结柔性立管的侧向失效分析[J]. 上海交通大学学报, 2018, 52(9): 1017-1022. |
LIU Xiaoyuan, XUE Hongxiang, TANG Wenyong. Lateral failure analysis of unbonded flexible risers under axial compression force[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1017-1022. | |
[16] |
ZHANG M M, CHEN X Q, FU S X, et al. Theoretical and numerical analysis of bending behavior of unbonded flexible risers[J]. Marine Structures, 2015, 44: 311-325.
doi: 10.1016/j.marstruc.2015.10.001 URL |
[17] | LIU Q S, XUE H X, TANG W Y, et al. Theoretical and numerical methods to predict the behaviour of unbonded flexible riser with composite armour layers subjected to axial tension[J]. Ocean Engineering, 2020, 199: 107038. |
[18] | 朱彦聪. 钢丝缠绕增强塑料复合管外压失稳研究[D]. 杭州: 浙江大学, 2007. |
ZHU Yancong. Buckling analysis of plastic pipe reinforced by winding steel wires under external pressure[D]. Hangzhou: Zhejiang University, 2007. | |
[19] | 董磊磊. 非粘合柔性立管截面特性的理论计算及BSR区域的疲劳分析[D]. 大连: 大连理工大学, 2013. |
DONG Leilei. Theoretical prediction of cross-sectional properties and fatigue analysis in the BSR area for unbonded flexible risers[D]. Dalian: Dalian University of Technology, 2013. | |
[20] |
CHAKRABARTI S K, FRAMPTON R E. Review of riser analysis techniques[J]. Applied Ocean Research, 1982, 4(2): 73-90.
doi: 10.1016/S0141-1187(82)80002-3 URL |
[21] |
SEYED F B, PATEL M H. Mathematics of flexible risers including pressure and internal flow effects[J]. Marine Structures, 1992, 5(2/3): 121-150.
doi: 10.1016/0951-8339(92)90025-K URL |
[22] | ALI B. Development of a constitutive model to simulate unbonded flexible riser pipe elements[D]. London: Brunel University, 2008 |
[23] | 庄茁, 张帆, 岑松, 等. ABAQUS非线性有限元分析与实例[M]. 北京: 科学出版社, 2005. |
ZHUANG Zhuo. Nonlinear finite element analysis and examples of ABAQUS[M]. Beijing: Science Press, 2005. | |
[24] | 王人杰. 纤维增强复合材料横向弹性常数[J]. 复合材料学报, 1996, 13(2): 98-104. |
WANG Renjie. Transverse elastic constants for fiber reinforced composite materials[J]. Acta Materiae Compositae Sinica, 1996, 13(2): 98-104. |
[1] | 杨玲玉, 董顺, 洪长青. 新型低密度树脂裂解碳改性碳纤维复合材料的制备与性能研究[J]. 空天防御, 2022, 5(4): 1-9. |
[2] | 贾米芝, 徐澧明, 林楠, 南博华, 王坤, 蔡登安, 周光明. 具有回弹复位功能易裂盖的结构设计及力学性能研究[J]. 空天防御, 2022, 5(2): 8-16. |
[3] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[4] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[5] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[6] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[7] | 管清宇, 夏品奇, 郑晓玲, 吴光辉. 复合材料层压板冲击后压缩强度拟合模型[J]. 上海交通大学学报, 2021, 55(11): 1459-1466. |
[8] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
[9] | 栾建泽,那景新,慕文龙,谭伟,陈宏利. 低速加载对铝合金-玄武岩纤维增强树脂复合材料粘接接头失效的影响[J]. 上海交通大学学报, 2020, 54(11): 1200-1208. |
[10] | 刘海龙,张大旭,祁荷音,伍海辉,郭洪宝,洪智亮,陈超,张毅. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10): 1074-1083. |
[11] | 刘晓东,吴磊,孔谅,王敏,陈一东. 空气等离子处理对碳纤维增强复合材料表面特性及胶接性能的影响[J]. 上海交通大学学报, 2019, 53(8): 971-977. |
[12] | 李昱霖, 安庆升, 杨坤好, 唐晓峰, 刘龙涛. 防热承载一体化复合材料电缆罩分析及验证[J]. 空天防御, 2019, 2(3): 1-7. |
[13] | 杜思琦,王继崇,彭雄奇,顾海麟. 可生物降解的黄麻纤维/聚乳酸复合材料的制备和力学性能[J]. 上海交通大学学报, 2019, 53(11): 1335-1341. |
[14] | 杨万友,王家序,黄彦彦,周青华,杨勇. 热载荷作用下颗粒增强复合材料温升分布数值模拟[J]. 上海交通大学学报, 2019, 53(11): 1342-1351. |
[15] | 盛鸣剑,陈普会,钱一彬. 一种复材层合板低速冲击后压缩强度估算方法[J]. 上海交通大学学报, 2019, 53(10): 1182-1186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||