[1]DANG T D, HALLETT S R. A numerical study on impact and compression after impact behaviour of va-riable angle tow laminates[J]. Composite Structures, 2013, 96(4): 194-206.
[2]SUEMASU H. Analytical approaches to compression after impact (CAI) behavior of carbon fiber-reinforced composite materials[J]. Advanced Composite Materials, 2014, 25(1): 1-18.
[3]SUEMASU H, ICHIKI M. Analytical study on low compressive strength of composite laminates with impact damage[J]. Composite Structures, 2013, 104(5): 169-175.
[4]SLATTERY P G, MCCARTHY C T, HIGGINS R M O. Assessment of residual strength of repaired so-lid laminate composite materials through mechanical testing[J]. Composite Structures, 2016, 147: 122-130.
[5]JEFFERSON A J, ARUMUGAM V, SARAVANAKUMAR K, et al. Compression after impact strength of repaired GFRP composite laminates under repeated impact loading[J]. Composite Structures, 2015, 133: 911-920.
[6]KULKARNI M D, GOEL R, NAIK N K. Effect of back pressure on impact and compression-after-impact characteristics of composites[J]. Composite Structures, 2011, 93(2): 944-951.
[7]NASH N H, YOUNG T M, STANLEY W F. An investigation of the damage tolerance of carbon/benzoxazine composites with a thermoplastic tough-ening interlayer[J]. Composite Structures, 2016, 147: 25-32.
[8]HABIB F A. A new method for evaluating the resi-dual compression strength of composites after impact[J]. Composite Structures, 2001, 53(3): 309-316.
[9]BORRELLI R, FRANCHITTI S, CAPRIO F D, et al. A repair criterion for impacted composite structures based on the prediction of the residual compressive strength[J]. Procedia Engineering, 2014, 88: 117-124.
[10]沈真, 杨胜春, 陈普会. 复合材料抗冲击性能和结构压缩设计许用值[J]. 航空学报, 2007, 28(3): 561-566.
SHEN Zhen, YANG Shengchun, CHEN Puhui. Behaviors of composite materials to withstand impact and structural compressive design allowableness[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 561-566.
[11]REMACHA M, SNCHEZ-SEZ S, LPEZ-ROMANO B, et al. A new device for determining the compression after impact strength in thin laminates[J]. Composite Structures, 2015, 127: 99-107.
[12]ZHANG A Y, LU H B, ZHANG D X. Effects of voids on residual tensile strength after impact of hygrothermal conditioned CFRP laminates[J]. Composite Structures, 2013, 95: 322-327.
[13]RIVALLANT S, BOUVET C, ABI ABDALLAH E A, et al. Experimental analysis of CFRP laminates subjected to compression after impact: The role of impact-induced cracks in failure[J]. Composite Structures, 2014, 111: 147-157.
[14]TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212-226.
[15]MAIO L, MONACO E, RICCI F, et al. Simulation of low velocity impact on composite laminates with progressive failure analysis[J]. Composite Structures, 2013, 103: 75-85.
[16]贾建东, 丁运亮, 胡伯仁. 复合材料层合板低速冲击后压缩破坏的数值模拟[J]. 机械科学与技术, 2010, 29(10): 1320-1324.
JIA Jiandong, DING Yunliang, HU Boren. Numerical simulation of the compressive failure of composite laminates under low velocity impact[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(10): 1320-1324.
[17]ROMANO F, DI CAPRIO F D, MERCURIO U. Compression after impact analysis of composite panels and equivalent hole method[J]. Procedia Engineering, 2016, 167: 182-189.
[18]SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576. |