上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1341-1348.doi: 10.16183/j.cnki.jsjtu.2021.126
王卓鑫1, 赵海涛1(), 谢月涵2, 任翰韬2, 袁明清1, 张博明3, 陈吉安1
收稿日期:
2021-04-09
出版日期:
2022-10-28
发布日期:
2022-11-03
通讯作者:
赵海涛
E-mail:zht@sjtu.edu.cn.
作者简介:
王卓鑫(1995-),女,山西省晋中市人,硕士生,从事复合材料性能的机器学习研究.
WANG Zhuoxin1, ZHAO Haitao1(), XIE Yuehan2, REN Hantao2, YUAN Mingqing1, ZHANG Boming3, CHEN Ji’an1
Received:
2021-04-09
Online:
2022-10-28
Published:
2022-11-03
Contact:
ZHAO Haitao
E-mail:zht@sjtu.edu.cn.
摘要:
为减少测试成本和缩短设计周期,基于机器学习方法对树脂基复合材料模量的预报方法进行了研究.采用一种全新预测方法——神经网络联合遗传算法(GA-ANN),将T800/环氧复合材料的强度、泊松比和失效应变作为反向传播(BP)神经网络的3个输入变量,在遗传算法(GA)中得出最优阈值和权重,并将所得数值赋给对应的网络参数,更新BP神经网络以更高的准确率预测树脂基复合材料的模量;同等条件下,用Adam算法进行预测.对比这两种方法,结果充分证明了GA-ANN的可行性.
中图分类号:
王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348.
WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an. Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348.
表1
数据集中的部分样本(归一化处理)
试验 编号 | x | ν | y | z1 | z2 |
---|---|---|---|---|---|
1 | 0.463 068 | 0.637 681 | 0.403 461 | 0.652 174 | 0.60 |
2 | 0.414 773 | 0.543 478 | 0.234 987 | 0.608 696 | 0.60 |
3 | 0.696 023 | 0.471 014 | 0.388 657 | 0.608 696 | 0.20 |
4 | 0.510 417 | 0.710 145 | 0.434 320 | 0.608 696 | 0.55 |
5 | 0.754 735 | 0.731 884 | 0.645 538 | 0.521 739 | 0.70 |
6 | 0.775 568 | 0.789 855 | 0.604 671 | 0.565 217 | 0.70 |
7 | 0.778 409 | 0.347 826 | 0.576 939 | 0.608 696 | 0.70 |
[1] | 刘陈续, 于桂兰. 基于神经网络的层状周期结构能量传输谱预测[J]. 上海交通大学学报, 2021, 55(1): 88-95. |
LIU Chenxu, YU Guilan. Prediction of energy transmission spectrum of layered periodic structure based on neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 88-95. | |
[2] |
GELAYOL G, MINOO N, KHASHAYAR B, et al. A machine learning case study with limited data for prediction of carbon fiber mechanical properties[J]. Computers in Industry, 2019, 105: 123-132.
doi: 10.1016/j.compind.2018.11.004 URL |
[3] |
ZHANG Z S, HONG Y, HOU B, et al. Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation[J]. Carbon, 2019, 148: 115-123.
doi: 10.1016/j.carbon.2019.03.046 URL |
[4] | CHEN G, WANG H Y, BEZOLD A, et al. Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network[J]. Composite Structures, 2019, 223: 89-91. |
[5] |
QI Z C, ZHANG N X, LIU Y, et al. Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning[J]. Composite Structures, 2019, 212: 199-206.
doi: 10.1016/j.compstruct.2019.01.042 URL |
[6] | 杨红, 程万里, 任丽丽. 高温高压蒸汽改性落叶松木材力学性能预测模型的建立[J]. 东北林业大学学报, 2016, 44(4): 77-80. |
YANG Hong, CHENG Wanli, REN Lili. Establishment of prediction model for mechanical properties of larch wood modified by high temperature and high pressure steam[J]. Journal of Northeast Forestry University, 2016, 44(4): 77-80. | |
[7] | 白晓明. 基于数据挖掘的复合材料宏—细观力学模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
BAI Xiaoming. Research on macro-micromechanics model of composite materials based on data mining[D]. Harbin:Harbin Institute of Technology, 2016. | |
[8] | 张博. 稀土基化合物的磁熵变及其机器学习研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018. |
ZHANG Bo. Magnetic entropy change of rare earth-based compounds and its machine learning research[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2018. | |
[9] |
QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation[J]. Composite Structures, 2018, 210: 339-347.
doi: 10.1016/j.compstruct.2018.11.056 URL |
[10] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[11] | FU L, LI P F. The research survey of system identification method[C]//International Conference on Intelligent Human-machine Systems & Cybernetics. Hangzhou, China: IEEE Computer Society, 2013: 397-401. |
[12] |
DING S F, SU C Y, YU J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162.
doi: 10.1007/s10462-011-9208-z URL |
[13] | 曾坤, 姜志侠. 基于多遗传算法的BP神经网络人脸识别[J]. 计算机技术与发展, 2021, 31(1): 77-82. |
ZENG Kun, JIANG Zhixia. Face recognition of BP neural network based on multiple genetic algorithms[J]. Computer Technology and Development, 2021, 31(1): 77-82. | |
[14] | ZHANG H, LI S X, LIU X Y. Prediction of total order amount based on BP neural network optimized by genetic algorithm[C]//Proceedings of 2019 2nd International Conference on Mechanical, Electronic and Engineering Technology. Shanxi, China: Computer Science and Electronic Technology International Society, 2019: 106-111. |
[15] | WANG X P, CAO L M. Genetic algorithm theory, application and software implementation[M]. Xi’an: WestAnn Traffic University Press, 2002. |
[16] | KINGMA D, BA J. Adam: A method for stochastic optimization[DB/OL]. (2014-11-02)[2021-04-05]. https://xueshu.baidu.com/usercenter/paper/show?paperid=37a73866f09edd03830b234716447e4f. |
[17] | 朱攀星, 杨绍昌. X850树脂预浸料材料工艺性研究[J]. 科技展望, 2016, 26(24): 70+72. |
ZHU Panxing, YANG Shaochang. Research on the processability of X850 resin prepreg material[J]. Science and Technology Outlook, 2016, 26(24): 70+72. |
[1] | 闫青, 鲁建厦, 江伟光, 邵益平, 汤洪涛, 李英德. 考虑双端口布局的紧致化仓储系统堆垛机路径优化[J]. 上海交通大学学报, 2022, 56(7): 858-867. |
[2] | 周天颜, 冯小恩, 范云锋, 董诗音, 李玉庆, 金慧中. 避免防空火力过剩的地面兵力防御部署优化模型[J]. 空天防御, 2022, 5(4): 19-23. |
[3] | 王箫剑, 洪君, 陈晶华, 李鸿光. 基于参数化建模和响应面优化的箱体减重研究[J]. 空天防御, 2022, 5(4): 60-66. |
[4] | 贾岛, 陈磊, 朱志鹏, 余曜, 迟德建. 机器学习在引战系统设计中的应用研究[J]. 空天防御, 2022, 5(2): 27-31. |
[5] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[6] | 李川, 聂熠文, 刘军伟, 孟凡钦, 沈晓静. 基于机器学习的多算法融合航迹稳健起始方法[J]. 空天防御, 2022, 5(1): 20-24. |
[7] | 周宇泰, 徐岳, 李宇, 蒋国韬. 基于遗传算法的干扰态势下三维雷达网优化布站方法[J]. 空天防御, 2022, 5(1): 52-59. |
[8] | 周毅, 秦康平, 孙近文, 范栋琦, 郑义明. 台风气象环境电网设备风险量化预警及其N-m故障处置预案在线生成方法[J]. 上海交通大学学报, 2021, 55(S2): 22-30. |
[9] | 李翠明, 王宁, 张晨. 基于改进遗传算法的光伏板清洁分级任务规划[J]. 上海交通大学学报, 2021, 55(9): 1169-1174. |
[10] | 何夏维, 蔡云泽, 严玲玲. 一种合成残差式的反作用轮故障检测方法[J]. 上海交通大学学报, 2021, 55(6): 716-728. |
[11] | 顾一凡, 赵文龙, 唐善军, 杨擎宇, 郑鑫. 分布式主/被动成像探测系统目标空间协同定位方法研究[J]. 空天防御, 2021, 4(4): 119-126. |
[12] | 祝颂, 钱晓超, 陆营波, 刘飞. 基于XGBoost的装备体系效能预测方法[J]. 空天防御, 2021, 4(2): 1-. |
[13] | 卓鹏程, 严瑾, 郑美妹, 夏唐斌, 奚立峰. 面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法[J]. 上海交通大学学报, 2021, 55(10): 1255-1262. |
[14] | 刘陈续, 于桂兰. 基于神经网络的层状周期结构能量传输谱预测[J]. 上海交通大学学报, 2021, 55(1): 88-95. |
[15] | 王金凤, 陈璐, 杨雯慧. 考虑设备可用性约束的单机调度问题[J]. 上海交通大学学报, 2021, 55(1): 103-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||