上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (1): 88-95.doi: 10.16183/j.cnki.jsjtu.2019.242

所属专题: 《上海交通大学学报》2021年“土木建筑工程”专题 《上海交通大学学报》2021年12期专题汇总专辑

• • 上一篇    下一篇

基于神经网络的层状周期结构能量传输谱预测

刘陈续, 于桂兰()   

  1. 北京交通大学 土木建筑工程学院,北京  100044
  • 收稿日期:2019-08-19 出版日期:2021-01-01 发布日期:2021-01-19
  • 通讯作者: 于桂兰 E-mail:glyu@bjtu.edu.cn
  • 作者简介:刘陈续(1995-),男,江苏省徐州市人,博士生,主要从事周期结构减振隔震的研究.
  • 基金资助:
    国家自然科学基金资助项目(11772040)

Prediction of Energy Transmission Spectrum of Layered Periodic Structures by Neural Networks

LIU Chenxu, YU Guilan()   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2019-08-19 Online:2021-01-01 Published:2021-01-19
  • Contact: YU Guilan E-mail:glyu@bjtu.edu.cn

摘要:

本文对层状周期结构的能量传输谱预测方法进行了研究.在考虑几何参数、物理参数单独变化以及同时变化3种情况下,通过构建深层反向传播(BP)神经网络,实现层状周期结构能量传输谱的精准预测.与径向基函数(RBF)神经网络进行对比实验,实验结果验证了所提方法的有效性.

关键词: 层状周期结构, 深层反向传播神经网络, 径向基函数神经网络, 能量传输谱, 衰减域

Abstract:

In this paper, the prediction of the energy transmission spectrum for layered periodic structures is studied. By considering three cases of geometric parameters and physical parameters changing individually or simultaneously, a deep back propagation (BP) neural network is constructed to realize accurate prediction of the energy transmission spectrum of layered periodic structure. A comparison of the predicted results with those obtained by the radial basis function (RBF) neural network verifies the effectiveness of the proposed method.

Key words: layered periodic structure, deep back propagation (BP) neural network, radial basis function (RBF) neural network, energy transmission spectrum, attenuation domain

中图分类号: