上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (1): 96-102.doi: 10.16183/j.cnki.jsjtu.2019.185
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“化学化工”专题
收稿日期:
2019-06-25
出版日期:
2021-01-01
发布日期:
2021-01-19
通讯作者:
胡广洪
E-mail:hguangh@sjtu.edu.cn
作者简介:
郭荣盛(1995-),男,湖北省黄冈市人,硕士生,主要从事金属-聚合物组合成型的研究.
GUO Rongsheng, HU Guanghong(), RONG Jian, WANG Yuanlong
Received:
2019-06-25
Online:
2021-01-01
Published:
2021-01-19
Contact:
HU Guanghong
E-mail:hguangh@sjtu.edu.cn
摘要:
研究铜的表面微纳米结构制备工艺并进行了优化.使用碳酸钠和钼酸钠的水溶液作为电解液,在恒定电压下对铜表面进行阳极氧化,在铜表面生成一层氧化膜.使用磷酸和磷酸二氢钠的水溶液作为腐蚀液,对铜表面进行腐蚀处理,以在铜表面获取微纳米结构,并在扫描电镜下观察其形貌.统计分析扫描电镜图片,计算得到铜表面的微纳米结构的孔隙率.结果表明:阳极氧化电压为15 V,阳极氧化时间为20 min,磷酸质量分数为20%,腐蚀时间为30 min时,铜的表面形貌较为平整,孔隙率达到25.77%.根据正交实验结果,腐蚀液种类、浓度以及腐蚀时间对孔隙率的影响较大,而阳极氧化电解液、电压以及电解时间影响不明显.使用阳极氧化和化学腐蚀相结合的方法可以在铜表面制备出均匀、孔隙率高的微纳米结构.
中图分类号:
郭荣盛, 胡广洪, 荣建, 王元龙. 金属-聚合物直接成型技术中铜的表面处理[J]. 上海交通大学学报, 2021, 55(1): 96-102.
GUO Rongsheng, HU Guanghong, RONG Jian, WANG Yuanlong. Copper Surface Treatment in Metal-Polymer Direct Molding Technology[J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 96-102.
表3
不同工艺参数下的孔隙率
实验组 | w(H3PO4)/% | w(NaH2PO4)/% | t1/s | t2/s | w(Na2CO3)/% | U/V | ε/% |
---|---|---|---|---|---|---|---|
1 | 16 | 1 | 1 320 | 720 | 5 | 12 | 4.99 |
2 | 16 | 2 | 1 440 | 840 | 10 | 14 | 8.57 |
3 | 16 | 3 | 1 560 | 960 | 15 | 16 | 5.78 |
4 | 16 | 4 | 1 680 | 1 080 | 20 | 18 | 14.66 |
5 | 16 | 5 | 1 800 | 1 200 | 25 | 20 | 12.45 |
6 | 17 | 1 | 1 440 | 960 | 20 | 20 | 7.50 |
7 | 17 | 2 | 1 560 | 1 080 | 25 | 12 | 19.11 |
8 | 17 | 3 | 1 680 | 1 200 | 5 | 14 | 16.69 |
9 | 17 | 4 | 1 800 | 720 | 10 | 16 | 13.47 |
10 | 17 | 5 | 1 320 | 840 | 15 | 18 | 20.90 |
11 | 18 | 1 | 1 560 | 1 200 | 10 | 18 | 21.97 |
12 | 18 | 2 | 1 680 | 720 | 15 | 20 | 22.30 |
13 | 18 | 3 | 1 800 | 840 | 20 | 12 | 15.99 |
14 | 18 | 4 | 1 320 | 960 | 25 | 14 | 18.50 |
15 | 18 | 5 | 1 440 | 1 080 | 5 | 16 | 22.30 |
16 | 19 | 1 | 1 680 | 840 | 25 | 16 | 18.45 |
17 | 19 | 2 | 1 800 | 960 | 5 | 18 | 18.65 |
18 | 19 | 3 | 1 320 | 1 080 | 10 | 20 | 20.78 |
19 | 19 | 4 | 1 440 | 1 200 | 15 | 12 | 21.56 |
20 | 19 | 5 | 1 560 | 720 | 20 | 14 | 19.09 |
21 | 20 | 1 | 1 800 | 1 080 | 15 | 14 | 17.45 |
22 | 20 | 2 | 1 320 | 1 200 | 20 | 16 | 20.90 |
23 | 20 | 3 | 1 440 | 720 | 25 | 18 | 25.77 |
24 | 20 | 4 | 1 560 | 840 | 5 | 20 | 21.43 |
25 | 20 | 5 | 1 680 | 960 | 10 | 12 | 22.36 |
表4
各个水平孔隙率均值
i | K(i,f) | |||||
---|---|---|---|---|---|---|
f=w(H3PO4) | f=w(NaH2PO4) | f=t1 | f=t2 | f=w(Na2CO3) | f=U | |
1 | 0.092 9 | 0.140 7 | 0.172 1 | 0.171 2 | 0.168 1 | 0.168 0 |
2 | 0.149 2 | 0.179 1 | 0.171 4 | 0.170 7 | 0.174 3 | 0.160 6 |
3 | 0.202 1 | 0.166 0 | 0.174 8 | 0.145 6 | 0.176 0 | 0.161 7 |
4 | 0.197 1 | 0.177 2 | 0.188 9 | 0.188 6 | 0.156 3 | 0.203 9 |
5 | 0.215 8 | 0.194 2 | 0.156 0 | 0.187 1 | 0.188 6 | 0.168 9 |
R | 0.122 9 | 0.053 5 | 0.032 9 | 0.043 0 | 0.032 3 | 0.043 3 |
[1] | 周雄,胡广洪. 基于正交实验优化不锈钢表面纳米孔结构制备工艺[J]. 表面技术,2019, 48(1): 161-167. |
ZHOU Xiong, HU Guanghong. Preparation process of nanoporous structure on stainless steel surface by orthogonal experimental methods [J]. Surface Technology, 2019, 48(1): 161-167. | |
[2] | 李颖,梅园,王颖,等. 面向金属/树脂复合材料的纳米注塑成型技术综述[J]. 材料导报,2018, 32(13): 2295-2303. |
LI Ying, MEI Yuan, WANG Ying, et al. The state-of-art of nano-molding technique applying to the production of metal/polymer composites [J]. Material Reports, 2018, 32(13): 2295-2303. | |
[3] | 樊聪,胡广洪,凌成智. 聚合物-金属直接成型技术[J]. 上海交通大学学报,2018, 52(2): 176-181. |
FAN Cong, HU Guanghong, LING Chengzhi. Polymer-metal direct molding technology [J]. Journal of Shanghai Jiao Tong University, 2018, 52(2): 176-181. | |
[4] | 胡广洪,杜彦丽. 聚合物-金属组合成型及其关键技术[J]. 上海塑料,2015, 1(4): 6-10. |
HU Guanghong, DU Yanli. Polymer-to-metal hybrid technology and its key techniques [J]. Shanghai Plastics, 2015, 1(4): 6-10. | |
[5] | GRUJICIC M, SELLAPPAN V, OMAR M A, et al. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components [J]. Journal of Materials Processing Technology, 2008, 197(1/2/3): 363-373. |
[6] | 比亚迪股份有限公司.一种金属-树脂复合体及其制备方法: CN201410305849.X[P].2015-12-30[2019-06-10]. |
BYD Company Limited. A metal-resin complex and a preparation method of its preparation: CN201410305849.X [P].2015-12-30[2019-06-10]. | |
[7] | SALGIN B, ÖZKANAT Ö, MOL J M C, et al. Role of surface oxide properties on the aluminum epoxy interfacial bonding [J]. The Journal of Physical Chemistry, 2013, 117(9): 4480-4487. |
[8] | OZAWA T, KATOH K, MAEDA M. Friction stir lap welding of thermoplastic resins to 3003 aluminum alloy [J]. Journal of Japan Institute of Light Metals, 2015, 65(9): 403-405. |
[9] | 东莞劲胜精密组件股份有限公司.一种塑料与金属复合材料及其制造方法: CN 201310231734.6[P]. 2013-10-09[2019-06-10]. |
JANUS (Dongguan) Precision Components Co., Ltd. A metal-resin complex and a manufacturing method of its preparation: CN 201310231734.6[P]. 2013-10-09[2019-06-10]. | |
[10] | MERTENS A J, SENTHILVELAN S. Effect of mating metal gear surface texture on the polymer gear surface temperature [J]. Materials Today Proceedings, 2015, 2(5): 1763-1769. |
[11] | KIM J Y, AHN K, JEONG S Y, et al. Enhancement of adhesion between polyphenylene sulfide and copper by surface treatments [J]. Current Applied Physics, 2014, 14(1): 118-121. |
[12] | FEISTAUER E, GUIMAR E M, EBEL T, et al. Ultrasonic joining: A novel direct-assembly technique for metal-composite hybrid structures [J]. Materials Letters, 2016, 170(22): 1-4. |
[13] | KIM W S, KIM K H, JANG C J, et al. Micro-and nano-morphological modification of aluminum surface for adhesive bonding to polymeric composites [J]. Journal of Adhesion Science and Technology, 2013, 27(15): 1625-1640. |
[14] | YEH R Y, HSU R Q. Development of ultrasonic direct joining of thermoplastic to laser structured metal [J]. International Journal of Adhesion and Adhesives, 2015, 65(1): 28-32. |
[15] | OCHOA-PUTMAN C, VAIDYA U K. Mechanisms of interfacial adhesion in metal-polymer composites—Effect of chemical treatment [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(8): 906-915. |
[16] | KIM W S, KIM K H, JANG C J, et al. Micro-and nano-morphological modification of aluminum surface for adhesive bonding to polymeric composites[J]. Journal of Adhesion Science and Technology, 2013, 27(15): 1625-1640. |
[17] | LIU F C, LIAO J, NAKATA K. Joining of metal to plastic using friction lap welding [J]. Materials and Design, 2014, 54(1): 236-238. |
[1] | 魏晓静, 翟双岭, 石鑫, 高多龙, 闻小虎, 刘冬梅, 任天辉. 铜氨络合物对二乙基羟胺除氧缓蚀性能的影响[J]. 上海交通大学学报, 2022, 56(6): 818-826. |
[2] | 万浩, 顾村锋, 计淞耀, 靳子凡, 段宇文, 许进. 基于铜基微同轴线的Ka波段多波束天线子系统仿真建模技术[J]. 空天防御, 2022, 5(4): 53-59. |
[3] | 蒋玉婷, 张鹏,吕凤勇. 采用易挥发工质对超亲水泡沫铜的毛细性能表征[J]. 上海交通大学学报, 2019, 53(11): 1294-1301. |
[4] | 俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592. |
[5] | 樊聪,胡广洪,凌成智. 聚合物-金属直接成型技术[J]. 上海交通大学学报(自然版), 2018, 52(2): 176-181. |
[6] | 邢雪娇a,李文婷b,侯敬丽c,刘建华b. 铜绿假单胞菌SJTD-1的磷酸化蛋白质组学[J]. 上海交通大学学报(自然版), 2017, 51(12): 1448-1455. |
[7] | 吴娇, 黄鹏, 陈晓玲, 周相满, 张武高. CuMn2O4/HZSM-5催化二甲醚水蒸气重整制氢的试验研究[J]. 上海交通大学学报(自然版), 2012, 46(04): 509-514. |
[8] | 李河宗1,2,董湘怀1,申昱1,Alexander Diehl 3, Hinnerk Hagenah 3, Ulf Engel 3, Marion Merkle. 采用应变梯度硬化模型预测黄铜薄板微弯曲弯矩[J]. 上海交通大学学报(自然版), 2011, 45(11): 1668-1672. |
[9] | 张宏伟, 宋执环. 基于彩色图像特征的铜成分软测量模型[J]. 上海交通大学学报(自然版), 2011, 45(08): 1211-1215. |
[10] | 高万茹,程先华. 等通道转角挤压对铝青铜力学性能的影响 [J]. 上海交通大学学报(自然版), 2011, 45(01): 35-0039. |
[11] | 浦晖,丁国良,胡海涛,高屹峰. 盐雾腐蚀对铜翅片换热器空气侧压降特性的影响[J]. 上海交通大学学报(自然版), 2010, 44(04): 545-0549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||