上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1349-1358.doi: 10.16183/j.cnki.jsjtu.2021.271
王烨成1,2, 李洋1,2(), 张迪3, 杨越1,2, 罗震1,2
收稿日期:
2021-07-23
出版日期:
2022-10-28
发布日期:
2022-10-14
通讯作者:
李洋
E-mail:liyang86@tju.edu.cn.
作者简介:
王烨成(1999-),男,河北省保定市人,硕士生,从事异种材料连接、微纳连接等研究.
基金资助:
WANG Yecheng1,2, LI Yang1,2(), ZHANG Di3, YANG Yue1,2, LUO Zhen1,2
Received:
2021-07-23
Online:
2022-10-28
Published:
2022-10-14
Contact:
LI Yang
E-mail:liyang86@tju.edu.cn.
摘要:
利用电阻单元焊(REW)实现了碳纤维增强尼龙6复合材料(CF/PA6)与TWIP980钢的高强度连接.使用304不锈钢铆钉作为辅助单元,研究了焊接电流与焊接时间对接头力学性能的影响.得到强度不同的4种失效模式,分析了接头的微观组织以及CF/PA6与铆钉和钢板界面微观形貌.CF/PA6具有远低于高强钢的熔点和热导率,使得CF/PA6在焊接中极易发生过热分解.在保证形成一定尺寸熔核的同时,避免或减少CF/PA6的分解是CF/PA6高强钢电阻单元焊能够成功实施的关键.通过采用大焊接电流、短焊接时间这种较“硬”的焊接工艺,可以在获得较高强度接头的同时,降低CF/PA6的分解.基于接头失效载荷,确定了本研究条件下的焊接工艺窗口.该工艺对焊接时间的变化敏感,许用的焊接时间窗口窄.在焊接工艺窗口内,仍无法完全避免CF/PA6的分解.有必要对焊接过程温度场和熔核形成机理等开展进一步研究.
中图分类号:
王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358.
WANG Yecheng, LI Yang, ZHANG Di, YANG Yue, LUO Zhen. Resistance Element Welding of Carbon Fiber Reinforced Thermoplastic Composites to High-Strength Steel[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1349-1358.
表3
试验焊接参数及拉伸剪切试验结果
序号 | 焊接电流 I/kA | 焊接时间 t/ms | 平均失效 载荷F/kN | 标准方差 δ/kN | 断裂模式 | 序号 | 焊接电流 I/kA | 焊接时间 t/ms | 平均失效 载荷F/kN | 标准方差 δ/kN | 断裂模式 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8 | 40 | 3.02 | 2.76 | 界面断裂 | 13 | 10 | 70 | 5.10 | 0.58 | 母材断裂 |
2 | 8 | 50 | 4.92 | 0.79 | 界面断裂 | 14 | 12 | 20 | 0.54 | 0.93 | 界面断裂 |
3 | 8 | 60 | 5.39 | 0.58 | 界面断裂 | 15 | 12 | 30 | 5.25 | 0.87 | 界面断裂 |
4 | 8 | 70 | 5.58 | 0.96 | 部分纽扣断裂 | 16 | 12 | 40 | 5.14 | 0.91 | 界面断裂 |
5 | 8 | 80 | 5.52 | 0.79 | 部分纽扣断裂 | 17 | 12 | 50 | 5.67 | 0.33 | 母材断裂 |
6 | 8 | 90 | 5.80 | 0.53 | 部分纽扣断裂 | 18 | 12 | 60 | 2.59 | 2.13 | 脆性断裂 |
7 | 8 | 100 | 4.77 | 1.46 | 部分纽扣断裂 | 19 | 14 | 20 | 3.07 | 1.07 | 界面断裂 |
8 | 8 | 110 | 1.95 | 3.38 | 脆性断裂 | 20 | 14 | 30 | 5.17 | 1.03 | 部分纽扣断裂 |
9 | 10 | 30 | 4.30 | 0.33 | 界面断裂 | 21 | 14 | 40 | 5.07 | 0.22 | 部分纽扣断裂 |
10 | 10 | 40 | 5.34 | 0.33 | 界面断裂 | 22 | 16 | 20 | 3.59 | 0.83 | 界面断裂 |
11 | 10 | 50 | 5.71 | 0.35 | 母材断裂 | 23 | 16 | 30 | 5.52 | 0.66 | 母材断裂 |
12 | 10 | 60 | 5.86 | 0.52 | 母材断裂 | 24 | 16 | 40 | 3.31 | 2.69 | 脆性断裂 |
[1] | 李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5): 47-61. |
LI Guangji, LIU Xinling. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020, 28(5): 47-61. | |
[2] | 李永兵, 李亚庭, 楼铭, 等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报, 2012, 48(18): 44-54. |
LI Yongbing, LI Yating, LOU Ming, et al. Lightweighting of car body and its challenges to joining technologies[J]. Journal of Mechanical Engineering, 2012, 48(18): 44-54. | |
[3] |
ALTENBACH H. Mechanics of advanced materials for lightweight structures[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(11): 2481-2496.
doi: 10.1177/0954406211417068 URL |
[4] | PFESTORF M. Manufacturing of high strength steel and aluminum for a mixed material body in white[J]. Advanced Materials Research, 2005, 6/7/8: 109-126. |
[5] | 陈平, 于祺, 孙明, 等. 高性能热塑性树脂基复合材料的研究进展[J]. 纤维复合材料, 2005, 22(2): 52-57. |
CHEN Ping, YU Qi, SUN Ming, et al. Advances in high performance FRTP composites[J]. Fiber Composites, 2005, 22(2): 52-57. | |
[6] |
PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys—A review[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 1-29.
doi: 10.1016/j.compositesa.2017.06.007 URL |
[7] |
BAÑON F, SIMONET B, SAMBRUNO A, et al. On the surface quality of CFRTP/steel hybrid structures machined by AWJM[J]. Metals, 2020, 10(7): 983.
doi: 10.3390/met10070983 URL |
[8] | LIU Y F, SU J H, MA G L, et al. Effect of the laser texturing width on hot-pressing joining of AZ31B and CFRTP[J]. Optics & Laser Technology, 2021, 143: 107350. |
[9] | WANG Q, JIA Z Y, ZHANG B Y, et al. Influence of processing parameters on joint shear performance in laser direct joining of CFRTP and aluminum alloy[J]. Materials & Design, 2021, 209: 109996. |
[10] |
ZHANG D W, ZHANG Q, FAN X G, et al. Review on joining process of carbon fiber-reinforced polymer and metal: Methods and joining process[J]. Rare Metal Materials and Engineering, 2018, 47(12): 3686-3696.
doi: 10.1016/S1875-5372(19)30018-9 URL |
[11] | ZHANG D W, ZHANG Q, FAN X G, et al. Review on joining process of carbon fiber-reinforced polymer and metal: Applications and outlook[J]. Rare Metal Materials and Engineering, 2019, 48(1): 44-54. |
[12] | SU J H, TAN C W, WU Z L, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J]. Optics & Laser Technology, 2020, 124: 106006. |
[13] |
GOUSHEGIR S M, DOS SANTOS J F, AMANCIO-FILHO S T. Friction Spot Joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechanical performance[J]. Materials & Design, 2014, 54: 196-206.
doi: 10.1016/j.matdes.2013.08.034 URL |
[14] |
BALLE F, WAGNER G, EIFLER D. Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer-joints[J]. Materialwissenschaft Und Werkstofftechnik, 2007, 38(11): 934-938.
doi: 10.1002/mawe.200700212 URL |
[15] |
MESCHUT G, JANZEN V, OLFERMANN T. Innovative and highly productive joining technologies for multi-material lightweight car body structures[J]. Journal of Materials Engineering and Performance, 2014, 23(5): 1515-1523.
doi: 10.1007/s11665-014-0962-3 URL |
[16] |
LING Z X, LI Y, LUO Z, et al. Resistance element welding of 6061 aluminum alloy to uncoated 22MnMoB boron steel[J]. Materials and Manufacturing Processes, 2016, 31(16): 2174-2180.
doi: 10.1080/10426914.2016.1151044 URL |
[17] | 凌展翔, 罗震, 冯悦峤, 等. 硼钢与铝合金的新型电阻单元焊技术[J]. 焊接学报, 2016, 37(7): 109-113. |
LING Zhanxiang, LUO Zhen, FENG Yueqiao, et al. A novel resistance element welding process of aluminum alloy to boron steel[J]. Transactions of the China Welding Institution, 2016, 37(7): 109-113. | |
[18] | 王义金, 王超, 董仕节, 等. 铝/钢异种金属的沉头铆钉电阻单元焊工艺研究[J]. 特种铸造及有色合金, 2020, 40(4): 426-430. |
WANG Yijin, WANG Chao, DONG Shijie, et al. Resistance element welding with concealed rivet cover joining 5052 aluminum alloy to DP780 duplex steel[J]. Special Casting & Nonferrous Alloys, 2020, 40(4): 426-430. | |
[19] |
GARCÍA-GARCÍA V, RUIZ-LEÓN F, REYES-CALDERÓN F, et al. Improvement of mechanical strength of a hot-worked twinning-induced plasticity steel through an optimum secondary annealing treatment[J]. Journal of Materials Engineering and Performance, 2021, 30(5): 3468-3483.
doi: 10.1007/s11665-021-05701-8 URL |
[20] |
MONRRABAL G, JIMÉNEZ J A, RESS J, et al. Corrosion behaviour of resistance-spot-welded high-Mn austenitic TWIP steel[J]. Corrosion Engineering, Science and Technology, 2021, 56(1): 50-59.
doi: 10.1080/1478422X.2020.1806606 URL |
[21] | 李久茂, 陈新平, 牛超. 第二代先进高强钢TWIP钢在车身典型零件上的应用[J]. 锻压技术, 2017, 42(9): 46-50. |
LI Jiumao, CHEN Xinping, NIU Chao. Application of the second generation AHSS of TWIP steel for typical automobile parts[J]. Forging & Stamping Technology, 2017, 42(9): 46-50. | |
[22] | YU J, CHOI D, RHEE S. Improvement of weldability of 1 GPa grade twin-induced plasticity steel[J]. Welding Journal, 2014, 93(3): 73-84. |
[23] |
MOHAMADIZADEH A, BIRO E, WORSWICK M. Shear band formation at the fusion boundary and failure behaviour of resistance spot welds in ultra-high-strength hot-stamped steel[J]. Science and Technology of Welding and Joining, 2020, 25(7): 556-563.
doi: 10.1080/13621718.2020.1773057 URL |
[24] | CHARDE N, RAJKUMAR R. Investigating spot weld growth on 304 austenitic stainless steel (2 mm) sheets[J]. Journal of Engineering Science and Technology, 2013, 8(1): 69-76. |
[1] | 唐靖钊, 颜家维, 沈耀. Al-1%Si合金剧烈塑性变形中Si元素形态对合金组织与性能的影响[J]. 上海交通大学学报, 2021, 55(3): 249-257. |
[2] | 朱强,秦飞,王武荣,韦习成. 不同搭接顺序下三层板电阻点焊接头力学性能[J]. 上海交通大学学报, 2019, 53(9): 1122-1129. |
[3] | 张威,敖三三,罗震,郝志壮,陈瑶,冯梦楠,解龑. 焊接能量对铝镍超声波焊接接头性能的影响[J]. 上海交通大学学报, 2019, 53(9): 1130-1135. |
[4] | 何冠中,楼铭,马运五,李永兵. 铝钢电阻单元焊接头力学性能模拟[J]. 上海交通大学学报, 2019, 53(5): 616-623. |
[5] | 祁睿格,何春霞,付菁菁,赵丽梅,姜彩昀. 无机纳米粒子对木粉/高密度聚乙烯木塑复合材料热学及力学性能的影响[J]. 上海交通大学学报(自然版), 2019, 53(3): 373-379. |
[6] | 杜思琦,王继崇,彭雄奇,顾海麟. 可生物降解的黄麻纤维/聚乳酸复合材料的制备和力学性能[J]. 上海交通大学学报, 2019, 53(11): 1335-1341. |
[7] | 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能[J]. 上海交通大学学报, 2019, 53(11): 1381-1388. |
[8] | 俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592. |
[9] | 陈建稳1,周涵1,陈务军2,赵兵2,王明洋3. 飞艇用层压织物膜材料在双向应力作用下的弹性参数分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 344-. |
[10] | 顾艳红1,马慧娟1,高辉1,车俊铁1,焦向东1,田路1,2. 16Mn钢摩擦螺柱焊接头的微观组织与局部腐蚀[J]. 上海交通大学学报(自然版), 2017, 51(11): 1348-1354. |
[11] | 金雪,朱平,李晗,王庆. 防松帽搭接焊缝力学性能及分区建模方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1297-1303. |
[12] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1160-1165. |
[13] | 董洪波,余新平,章威. Q550D超低碳贝氏体钢的微观组织模拟[J]. 上海交通大学学报(自然版), 2015, 49(01): 67-73. |
[14] | 何春锋,赵亦希,黄胜. 高强度双相钢板拉弯成形断裂的微观组织形貌分析[J]. 上海交通大学学报(自然版), 2014, 48(05): 618-623. |
[15] | 郑钰,李宏烨,庄新村,赵震. 金属板料剪切试验方法及应用的研究现状[J]. 上海交通大学学报(自然版), 2014, 48(03): 422-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||