上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (5): 615-623.doi: 10.16183/j.cnki.jsjtu.2019.283
所属专题: 《上海交通大学学报》2021年“交通运输工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2019-10-09
出版日期:
2021-05-28
发布日期:
2021-06-01
通讯作者:
朱平
E-mail:pzhu@sjtu.edu.cn
作者简介:
陶 威(1990-),男,浙江省绍兴市人,博士生,主要研究方向为复合材料结构多尺度可靠性优化设计.
基金资助:
TAO Weia, LIU Zhaob, XU Cana, ZHU Pinga()
Received:
2019-10-09
Online:
2021-05-28
Published:
2021-06-01
Contact:
ZHU Ping
E-mail:pzhu@sjtu.edu.cn
摘要:
三维正交机织复合材料具有优异的力学性能和抗分层能力,在汽车轻量化应用方面前景广阔. 以三维正交机织复合材料汽车翼子板为研究对象,基于多尺度仿真预测方法,建立复合材料弹性性能解析预测模型和翼子板宏观有限元模型. 同时针对材料和结构设计变量的不确定性,结合蒙特卡洛可靠性分析方法、Kriging代理模型和粒子群优化算法,实现复合材料翼子板多尺度可靠性优化设计. 结果表明:优化后的翼子板在满足结构刚度和可靠性要求的同时,达到了21.93%的轻量化效果.
中图分类号:
陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623.
TAO Wei, LIU Zhao, XU Can, ZHU Ping. Multi-Scale Reliability-Based Design Optimization of Three-Dimensional Orthogonal Woven Composite Fender[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 615-623.
表8
优化结果性能指标与可靠度验证
性能指标 | 约束 | 初始设计 | 确定性优化 | 可靠性优化 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
性能均值 | 可靠度/% | 性能均值 | 可靠度/% | 性能均值 | 可靠度/% | |||||||||||
安装点1刚度 | | 80.3 | 100 | 51.4 | 58.2 | 55.0 | 96.9 | |||||||||
安装点2刚度 | 86.9 | 100 | 54.0 | 89.9 | 58.9 | 99.8 | ||||||||||
安装点3刚度 | 159.1 | 100 | 52.8 | 64.6 | 57.2 | 97.9 | ||||||||||
安装点4刚度 | 145.4 | 100 | 51.2 | 60.3 | 55.7 | 98.5 | ||||||||||
外板刚度 | km≥100 N/mm | 334.2 | 100 | 113.6 | 97.7 | 127.4 | 99.2 | |||||||||
翼尖1刚度 | | 865.1 | 100 | 316.2 | 69.5 | 349.7 | 99.7 | |||||||||
翼尖2刚度 | 747.4 | 100 | 307.1 | 54.2 | 330.7 | 97.0 | ||||||||||
翼尖3刚度 | 2815.2 | 100 | 1105.2 | 100 | 1216.5 | 100 |
[1] | 范子杰, 桂良进, 苏瑞意, 等. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1):1-16. |
FAN Zijie, GUI Liangjin, SU Ruiyi, et al. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1):1-16. | |
[2] | 戎琦. 三维机织复合材料的织造技术[J]. 纤维复合材料, 2007, 24(1):31-33. |
RONG Qi. Weaving technology of 3D woven composites[J]. Fiber Composites, 2007, 24(1):31-33. | |
[3] | JIA X W, XIA Z H, GU B H. Nonlinear numerical predictions of three-dimensional orthogonal woven composite under low-cycle tension using multiscale repeating unit cells[J]. International Journal of Da-mage Mechanics, 2015, 24(3):338-362. |
[4] |
DAI S, CUNNINGHAM P R. Multi-scale damage modelling of 3D woven composites under uni-axial tension[J]. Composite Structures, 2016, 142:298-312.
doi: 10.1016/j.compstruct.2016.01.103 URL |
[5] | 朱国华, 成艾国, 王振, 等. 电动车轻量化复合材料车身骨架多尺度分析[J]. 机械工程学报, 2016, 52(6):145-152. |
ZHU Guohua, CHENG Aiguo, WANG Zhen, et al. Analysis of lightweight composite body structure for electrical vehicle using the multiscale approach[J]. Journal of Mechanical Engineering, 2016, 52(6):145-152. | |
[6] |
KIM D H, KIM H G, KIM H S. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015, 131:742-752
doi: 10.1016/j.compstruct.2015.06.028 URL |
[7] |
FU X W, RICCI S, BISAGNI C. Minimum-weight design for three dimensional woven composite stiffened panels using neural networks and genetic algorithms[J]. Composite Structures, 2015, 134:708-715.
doi: 10.1016/j.compstruct.2015.08.077 URL |
[8] | 王庆, 卢家海, 刘钊, 等. 碳纤维增强复合材料汽车保险杠的轻量化设计[J]. 上海交通大学学报, 2017, 51(2):136-141. |
WANG Qing, LU Jiahai, LIU Zhao, et al. A lightweight design of carbon fiber reinforced plastic auto bumper[J]. Journal of Shanghai Jiao Tong University, 2017, 51(2):136-141. | |
[9] |
MESOGITIS T S, SKORDOS A A, LONG A C. Uncertainty in the manufacturing of fibrous thermosetting composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57:67-75.
doi: 10.1016/j.compositesa.2013.11.004 URL |
[10] |
LIU Z, ZHU C, ZHU P, et al. Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm[J]. Composite Structures, 2018, 204:239-255.
doi: 10.1016/j.compstruct.2018.07.053 URL |
[11] |
CHEN X, WANG X J, QIU Z P, et al. A novel reliability-based two-level optimization method for composite laminated structures[J]. Composite Structures, 2018, 192:336-346.
doi: 10.1016/j.compstruct.2018.03.016 URL |
[12] |
TAO W, LIU Z, ZHU P, et al. Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm[J]. Composite Structures, 2017, 181:73-83.
doi: 10.1016/j.compstruct.2017.08.065 URL |
[13] |
JIN R C, CHEN W, SUDJIANTO A. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2005, 134(1):268-287.
doi: 10.1016/j.jspi.2004.02.014 URL |
[14] |
QUEIPO N V, HAFTKA R T, WEI S, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28.
doi: 10.1016/j.paerosci.2005.02.001 URL |
[15] | KENNEDY J, EBERHART R. Particle swarm optimization [C]//International Conference on Neural Networks (ICNN). Perth, WA, Australia: IEEE, 1995: 1942-1948. |
[1] | 张科, 吴亚东. 拓宽大涵道比风扇稳定运行范围的叶片优化设计[J]. 上海交通大学学报, 2020, 54(10): 1024-1034. |
[2] | 龙周, 陈松坤, 王德禹. 基于SMOTE算法的船舶结构可靠性优化设计[J]. 上海交通大学学报, 2019, 53(1): 26-34. |
[3] | 王刚成,马宁,顾解忡. 基于Kriging代理模型的船舶水动力性能多目标快速协同优化[J]. 上海交通大学学报(自然版), 2018, 52(6): 666-673. |
[4] | 王小庆a,b,金先龙a,b,曹源a. 大规模输水隧道水锤效应三维数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 98-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||