上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (5): 624-630.doi: 10.16183/j.cnki.jsjtu.2020.399
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
• 创新设计 • 上一篇
收稿日期:
2020-11-26
出版日期:
2021-05-28
发布日期:
2021-06-01
通讯作者:
张执南
E-mail:zhinanz@sjtu.edu.cn
作者简介:
何 可(1996-),男,浙江省瑞安市人,硕士生,现主要从事摩擦学系统设计与开发.
基金资助:
HE Ke1, WU Zishuai1, WANG Daoai2, ZHANG Zhinan1()
Received:
2020-11-26
Online:
2021-05-28
Published:
2021-06-01
Contact:
ZHANG Zhinan
E-mail:zhinanz@sjtu.edu.cn
摘要:
针对现有摩擦起电研究缺乏规范化试验支持的问题,自主研发一套适用于摩擦起电试验的摩擦-电学性能测试系统.通过模块化设计和系统集成,依次完成加载、运动和测控模块的设计,并开发LabVIEW测控软件.通过设置缓冲弹簧,优化加载结构,实现小载荷条件下的平稳加载,同时对上、下试样进行绝缘处理,实现对微电流的精准测量.通过对标测试和摩擦起电试验,验证测试系统的可靠性,并分析铜-铝界面转移电荷量的变化情况,初步确定转移电荷量与载荷的线性关系.研究结果有助于摩擦-电学测试的规范化.
中图分类号:
何可, 武子帅, 王道爱, 张执南. 摩擦-电学性能测试系统的设计与研发[J]. 上海交通大学学报, 2021, 55(5): 624-630.
HE Ke, WU Zishuai, WANG Daoai, ZHANG Zhinan. Development of a Triboelectric Performance Test System[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 624-630.
[1] |
FAN F R, LIN L, ZHU G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters, 2012, 12(6):3109-3114.
doi: 10.1021/nl300988z URL |
[2] |
ZHANG X S, SU M, BRUGGER J, et al. Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications[J]. Nano Energy, 2017, 33:393-401.
doi: 10.1016/j.nanoen.2017.01.053 URL |
[3] |
CHEN J, WANG Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator[J]. Joule, 2017, 1(3):480-521.
doi: 10.1016/j.joule.2017.09.004 URL |
[4] |
YANG Y, ZHU G, ZHANG H L, et al. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system[J]. ACS Nano, 2013, 7(10):9461-9468.
doi: 10.1021/nn4043157 URL |
[5] | 肖帮. PTFE基复合材料摩擦起电规律及其对摩擦学特性影响的研究[D]. 合肥: 合肥工业大学, 2017. |
XIAO Bang. Study on the triboelectrification of PTFE composites and its influence on tribological pro-perties[D]. Hefei: Hefei University of Technology, 2017. | |
[6] |
NEAGOE B, TEODORESCU H N, PRAWATYA Y, et al. Experimental bench for studying the relation between the dynamic characteristics of the frictional motion and the electric potential at the surface of polymer slabs in sliding conformal contact[J]. Tribology International, 2017, 111:107-115.
doi: 10.1016/j.triboint.2017.03.006 URL |
[7] | SAYFIDINOV K, CEZAN S D, BAYTEKIN B, et al. Minimizing friction, wear, and energy losses by eliminating contact charging[J]. Science Advances, 2018, 4(11): eaau 3808. |
[8] |
MATSUSAKA S, GHADIRI M, MASUDA H. Electrification of an elastic sphere by repeated impacts on a metal plate[J]. Journal of Physics D: Applied Physics, 2000, 33(18):2311-2319.
doi: 10.1088/0022-3727/33/18/316 URL |
[9] |
ZHU G, CHEN J, LIU Y, et al. Linear-grating triboelectric generator based on sliding electrification[J]. Nano Letters, 2013, 13(5):2282-2289.
doi: 10.1021/nl4008985 URL |
[10] |
ZI Y L, NIU S M, WANG J, et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators[J]. Nature Communications, 2015, 6:8376.
doi: 10.1038/ncomms9376 URL |
[11] | 薛超凡, 于敏, 姚举禄, 等. 碳纤维增强树脂基复合材料在低温条件下的微动摩擦磨损性能[J]. 上海交通大学学报, 2018, 52(5):604-611. |
XUE Chaofan, YU Min, YAO Julu, et al. Fretting wear characteristics of carbon fiber reinforced epoxy resin matrix composites in low temperature[J]. Journal of Shanghai Jiao Tong University, 2018, 52(5):604-611. | |
[12] | 孔亚彬, 沈明学, 张执南, 等. 橡胶O形圈/不锈钢配副往复摩擦生热特性[J]. 上海交通大学学报, 2019, 53(11):1352-1358. |
KONG Yabin, SHEN Mingxue, ZHANG Zhinan, et al. Thermal characteristics of reciprocating friction of rubber o-ring against stailess steel surface[J]. Journal of Shanghai Jiao Tong University, 2019, 53(11):1352-1358. | |
[13] | 李薇. 滑动摩擦起电检测装置研制及机理研究[D]. 北京: 北京林业大学, 2019. |
LI Wei. Detection device development and mechanism research of sliding tribo-electrification[D]. Beijing: Beijing Forestry University, 2019. | |
[14] | 何涛, 李金苗, 李成, 等. 基于LabVIEW的往复式摩擦试验机研制[J]. 机械设计与研究, 2020, 36(4):160-165. |
HE Tao, LI Jinmiao, LI Cheng, et al. Development of reciprocating friction testing machine based on LabVIEW[J]. Machine Design & Research, 2020, 36(4):160-165. | |
[15] |
KU I S Y, REDDYHOFF T, CHOO J H, et al. A novel tribometer for the measurement of friction in MEMS[J]. Tribology International, 2010, 43(5/6):1087-1090.
doi: 10.1016/j.triboint.2009.12.029 URL |
[16] |
HOIĆ M, HRGETIĆ M, DEUR J. Design of a pin-on-disc-type CNC tribometer including an automotive dry clutch application[J]. Mechatronics, 2016, 40:220-232.
doi: 10.1016/j.mechatronics.2016.10.016 URL |
[17] |
PAN S H, YIN N, ZHANG Z N. Time- & load-dependence of triboelectric effect[J]. Scientific Reports, 2018, 8(1):847-853.
doi: 10.1038/s41598-017-17386-y URL |
[18] | 郑有斌, 马韶晨, 冯雁歌, 等. 摩擦起电的界面调控与应用研究[J]. 中国科学: 化学, 2018, 48(12):1514-1530. |
ZHENG Youbin, MA Shaochen, FENG Yange, et al. Investigation on the interface control and utilization of triboelectrification[J]. SCIENTIA SINICA Chimica, 2018, 48(12):1514-1530.
doi: 10.1360/N032018-00200 URL |
|
[19] |
ZHANG Z N, YIN N, WU Z S, et al. Research methods of contact electrification: Theoretical simulation and experiment[J]. Nano Energy, 2021, 79:105501.
doi: 10.1016/j.nanoen.2020.105501 URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||