[1]LIU S B, WANG Q. Transient thermoelastic stress fields in a half-space[J]. Journal of Tribology, 2003, 125(1): 33-43.
[2]欧阳求保, 金方杰, 张荻, 等. SiCp/7A04铝基复合材料的高温变形行为[J]. 上海交通大学学报, 2008, 42(9): 1405-1409.
OUYANG Qiubao, JIN Fangjie, ZHANG Di, et al. The deformation behaviors of SiCp/7A04 composites at high temperatures[J]. Journal of Shanghai Jiao Tong University, 2008, 42(9): 1405-1409.
[3]CARSLAW H S, JAEGER J C. Conduction of heat in solids[M]. Oxford: Oxford University Press, 1986.
[4]FRANCIS H A. Interfacial temperature distribution within a sliding hertzian contact[J]. A S L E Transactions, 1971, 14(1): 41-54.
[5]TIAN X F, KENNEDY F E. Maximum and average flash temperatures in sliding contacts[J]. Journal of Tribology, 1994, 116(1): 167-174.
[6]LIU S B, WANG Q, HARRIS S J. Surface normal thermoelastic displacement in moving rough contacts[J]. Journal of Tribology, 2003, 125(4): 862-868.
[7]BARBER J R, MARTIN-MORAN C J. Green's functions for transient thermoelastic contact problems for the half-plane[J]. Wear, 1982, 79(1): 11-19.
[8]SEO K, MURA T. The elastic field in a half space due to ellipsoidal inclusions with uniform dilatational eigenstrains[J]. Journal of Applied Mechanics, 1979, 46(3): 568-572.
[9]BAZYAR M H, TALEBI A. Scaled boundary finite-element method for solving non-homogeneous anisotropic heat conduction problems[J]. Applied Mathematical Modelling, 2015, 39(23/24): 7583-7599.
[10]MORTAZAVI B, BANIASSADI M, BARDON J, et al. Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods[J]. Composites Part B: Engineering, 2013, 45(1): 1117-1125.
[11]余天堂, 万林林. 非均质材料热传导问题的扩展有限元法[J]. 计算力学学报, 2011, 28(6): 884-890.
YU Tiantang, WAN Linlin. Extended finite element method for heat transfer problems in heterogeneous material[J]. Chinese Journal of Computational Mechanics, 2011, 28(6): 884-890.
[12]陈康, 许希武. 梯度复合材料热传导分析的梯度单元法[J]. 复合材料学报, 2012, 29(4): 178-185.
CHEN Kang, XU Xiwu. Graded element method for the heat conduction analysis of gradient composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 178-185.
[13]张锐, 文立华, 杨淋雅, 等. 复合材料热传导系数均匀化计算的实现方法[J]. 复合材料学报, 2014, 31(6): 1581-1587.
ZHANG Rui, WEN Lihua, YANG Linya, et al. Realization methods of computational homogenization for thermal conductivity coefficient of composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1581-1587.
[14]蒋日鹏, 李晓谦, 李开烨, 等. 超声对铝合金凝固传热与组织形成的影响与作用机制[J]. 中南大学学报(自然科学版), 2012, 43(10): 3807-3813.
JIANG Ripeng, LI Xiaoqian, LI Kaiye, et al. Effect of ultrasonic on heat transfer and microstructure formation of aluminum alloy during solidification and its mechanism[J]. Journal of Central South University (Science and Technology), 2012, 43(10): 3807-3813.
[15]李专, 肖鹏, 熊翔, 等. C/C-SiC复合材料的导热性能及其影响因素[J]. 中南大学学报(自然科学版), 2013, 44(1): 40-45.
LI Zhuan, XIAO Peng, XIONG Xiang, et al. Thermal conductivity of C/C-SiC composites and its influence factors[J]. Journal of Central South University (Science and Technology), 2013, 44(1): 40-45.
[16]ESHELBY J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1959, 252(1271): 561-569.
[17]ZHOU Q H, JIN X Q, WANG Z J, et al. An efficient approximate numerical method for modeling contact of materials with distributed inhomogeneities[J]. International Journal of Solids and Structures, 2014, 51(19/20): 3410-3421.
[18]ZHOU Q H, WANG J X, WAN Q, et al. Numerical analysis of the influence of distributed inhomogeneities on tangential fretting[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(10): 1350-1370.
[19]周青华, 王家序, 杨勇, 等. 增强体对复合材料接触性能的影响[J]. 复合材料学报, 2017, 34(2): 389-399.
ZHOU Qinghua, WANG Jiaxu, YANG Yong, et al. Influence of reinforcements on the contact perfor-mance of composites[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 389-399.
[20]ZHOU K, KEER L M, WANG Q J. Semi-analytic solution for multiple interacting three-dimensional inhomogeneous inclusions of arbitrary shape in an infinite space[J]. International Journal for Numerical Methods in Engineering, 2011, 87(7): 617-638.
[21]YANG W Y, HUANG Y Y, ZHOU Q H, et al. Parametric study on stressed volume and its application to the quantification of rolling contact fatigue performance of heterogeneous material[J]. Tribology International, 2017, 107: 221-232.
[22]杨万友, 周青华, 王家序, 等. 考虑异质材料的线接触性能建模与分析[J]. 复合材料学报, 2016, 33(8): 1848-1858.
YANG Wanyou, ZHOU Qinghua, WANG Jiaxu, et al. Modeling and analysis on line contact performance of considering heterogeneous properties of material[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1848-1858.
[23]HIROSHI H, MINORU T. Equivalent inclusion method for steady state heat conduction in composites[J]. International Journal of Engineering Science, 1986, 24(7): 1159-1172.
[24]CHIU Y P. On the stress field and surface deformation in a half space with a cuboidal zone in which initial strains are uniform[J]. Journal of Applied Mechanics, 1978, 45(2): 302-306.
[25]MURA T. Micromechanics of defects in solids[M]. Dordrecht: Springer, 1987.
[26]JIN X Q, WANG Z J, ZHOU Q H, et al. On the solution of an elliptical inhomogeneity in plane elasti-city by the equivalent inclusion method[J]. Journal of Elasticity, 2014, 114(1): 1-18.
[27]CHEN W W, LIU S B, WANG Q J. Fast Fourier transform based numerical methods for elasto-plastic contacts of nominally flat surfaces[J]. Journal of Applied Mechanics, 2008, 75(1): 011022. |