上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1459-1466.doi: 10.16183/j.cnki.jsjtu.2020.360
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“材料科学”专题
收稿日期:
2020-11-06
出版日期:
2021-11-28
发布日期:
2021-12-03
通讯作者:
夏品奇
E-mail:xiapq@nuaa.edu.cn
作者简介:
管清宇(1988-),男,上海市人,博士生,高级工程师,现主要从事复合材料结构损伤容限研究.
GUAN Qingyu1,2, XIA Pinqi1(), ZHENG Xiaoling3, WU Guanghui4
Received:
2020-11-06
Online:
2021-11-28
Published:
2021-12-03
Contact:
XIA Pinqi
E-mail:xiapq@nuaa.edu.cn
摘要:
碳纤维增强的环氧树脂复合材料广泛地应用于飞机的主要承力结构,其冲击后压缩强度是损伤容限评估的重要内容.目前工程上主要利用大量试验获取冲击后压缩强度,对此需要开发一套简便的数学模型以描述冲击后压缩强度规律.提出一种全新的用于拟合复合材料层压板冲击后压缩强度数据的数学模型.采用该模型和初始模型参数,可以将不同冲击能量下的冲击后压缩强度数据转化为某一等效无损伤压缩强度数据,进而采用极大似然估计法对其进行正态分布拟合,得到正态分布的标准差.重复以上步骤,直至获得标准差的极小值,即可确定冲击后压缩强度数据拟合模型参数的最佳估计值.为了进一步表明该模型的适用性,进行不同厚度、铺层比例和材料类型的冲击后压缩试验,并采用该模型拟合试验数据.结果表明该模型对不同厚度、铺层比例和材料类型的冲击后压缩试验数据均具有较好的适用性.
中图分类号:
管清宇, 夏品奇, 郑晓玲, 吴光辉. 复合材料层压板冲击后压缩强度拟合模型[J]. 上海交通大学学报, 2021, 55(11): 1459-1466.
GUAN Qingyu, XIA Pinqi, ZHENG Xiaoling, WU Guanghui. Fitting Model to Compressive Strength of Composite Laminate After Impact[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1459-1466.
[1] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. |
DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12. | |
[2] | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. |
DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10. | |
[3] |
LIU H B, FALZON B G, TAN W. Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part B: Engineering, 2018, 136:101-118.
doi: 10.1016/j.compositesb.2017.10.016 URL |
[4] | 林智育, 许希武. 含冲击损伤复合材料加筋层板压缩剩余强度[J]. 航空学报, 2009, 30(1):56-61. |
LIN Zhiyu, XU Xiwu. Residual compressive strength of stiffened composite laminates with impact damage[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1):56-61. | |
[5] |
AHN S S, HONG S W, KOO J M, et al. Evaluation of compressive residual strength in composite material under impact damage[J]. Transactions of the Korean Society of Mechanical Engineers A, 2013, 37(4):503-509.
doi: 10.3795/KSME-A.2013.37.4.503 URL |
[6] |
ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures, 2019, 224:111007.
doi: 10.1016/j.compstruct.2019.111007 URL |
[7] | CMH-17 Committee. Composite materials handbook. Vol 3: Polymer matrix composites materials usage, design, and analysis[M]. Detroit: SAE International, 2012: 2-33. |
[8] | 杨宇, 孙侠生, 杨胜春, 等. 含冲击损伤复合材料层压板压缩破坏机制试验研究[J]. 复合材料学报, 2012, 29(3):197-202. |
YANG Yu, SUN Xiasheng, YANG Shengchun, et al. Experimental study on compressive failure mechanism of low-velocity-impact-damaged composite laminates[J]. Acta Materiae Compositae Sinica, 2012, 29(3):197-202. | |
[9] | 童谷生, 孙良新, 刘英卫, 等. 复合材料层压板低能量冲击后剩余抗压强度的工程估算[J]. 机械工程材料, 2004, 28(3):19-21. |
TONG Gusheng, SUN Liangxin, LIU Yingwei, et al. A simplified method of evaluating compression after impact strength for composite laminate[J]. Materials for Mechanical Engineering, 2004, 28(3):19-21. | |
[10] | 燕瑛, 曾东. 复合材料层板低速冲击剩余强度的研究[J]. 航空学报, 2003, 24(2):137-139. |
YAN Ying, ZENG Dong. Study on the post-impact compressive strength of composite lamin ates[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(2):137-139. | |
[11] |
PAPANICOLAOU G C, STAVROPOULOS C D. New approach for residual compressive strength prediction of impacted CFRP laminates[J]. Composites, 1995, 26(7):517-523.
doi: 10.1016/0010-4361(95)96809-K URL |
[12] |
ATAS A, MOHAMED G F, SOUTIS C. Modelling delamination onset and growth in pin loaded composite laminates[J]. Composites Science and Technology, 2012, 72(10):1096-1101.
doi: 10.1016/j.compscitech.2011.07.005 URL |
[13] | 张子龙, 程小全, 益小苏. 复合材料冲击损伤及冲击后压缩强度的等效实验方法[J]. 实验力学, 2001, 16(3):313-319. |
ZHANG Zilong, CHENG Xiaoquan, YI Xiaosu. An effective test method for characterization of impact damage and gaining the compression properties after impact of composite laminates[J]. Journal of Experimental Mechanics, 2001, 16(3):313-319. | |
[14] | DOST E F, ILCEWICZ L B, AVERY W B, et al. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates[J]. Composite Materials: Fatigue and Fracture, 1991, 3:476-500. |
[15] | DOST E F, ILCEWICZ L B, GOSSE J H. Sublaminate stability based modeling of impact damaged composite laminates[C]∥Proceeding of 3rd Technology Conference of American Society for Composites. Seattle, Washington, USA: Technomic Publishing Co., Ltd., 1988: 354-363. |
[16] | 崔海坡, 温卫东, 崔海涛. 层合复合材料板的低速冲击损伤及剩余压缩强度研究[J]. 机械科学与技术, 2006, 25(9):1013-1017. |
CUI Haipo, WEN Weidong, CUI Haitao. Research on low velocity impact damage and residual compressive strength of laminated composites[J]. Mechanical Science and Technology, 2006, 25(9):1013-1017. | |
[17] | HORTON R E, WHITEHEAD R S. Damage tolerance of composites[R]. Washington, USA: Federal Aviation Administration, 1998. |
[18] |
HOSUR M V, MURTHY C R L, RAMURTHY T S. Compression after impact testing of carbon fiber reinforced plastic laminates[J]. Journal of Composites Technology and Research, 1999, 21(2):51-64.
doi: 10.1520/CTR10947J URL |
[19] | 黄骁, 王进, 韩涛, 等. 复合材料层板冲击后压缩强度经验预测公式[J]. 复合材料学报, 2018, 35(5):1158-1165. |
HUANG Xiao, WANG Jin, HAN Tao, et al. An empirical prediction formula for compressive strength of composite laminates after impact[J]. Acta Materiae Compositae Sinica, 2018, 35(5):1158-1165. | |
[20] | 管清宇, 严文军, 吴光辉, 等. 碳纤维/环氧树脂复合材料层压板冲击凹坑的回弹特性[J]. 复合材料学报, 2020, 37(2):284-292. |
GUAN Qingyu, YAN Wenjun, WU Guanghui, et al. Impact dent relaxation characteristic of carbon fiber/epoxy resin composite laminate[J]. Acta Mater-iae Compositae Sinica, 2020, 37(2):284-292. | |
[21] |
LEVENBERG K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2(2):164-168.
doi: 10.1090/qam/1944-02-02 URL |
[22] |
MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441.
doi: 10.1137/0111030 URL |
[23] | CMH-17 Committee. Composite materials handbook. Vol 1: Polymer matrix composites guidelines for characterization of structural materials[M]. Detroit: SAE International, 2012: 8-38. |
[24] | ASTM Committee. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—15[S]. West Conshohocken, USA: ASTM International, 2015. |
[25] | ASTM Committee. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137M—12[S]. West Conshohocken, USA: ASTM International, 2012. |
[26] | ASTM Committee. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D6641/D6641M—14[S]. West Conshohocken, USA: ASTM International, 2014. |
[27] | 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 第4版. 北京: 高等教育出版社, 2008, 213-216. |
SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability theory and mathematical statistics[M]. 4th ed. Beijing: Higher Education Press, 2008: 213-216. |
[1] | 刘庆升, 薛鸿祥, 袁昱超, 唐文勇. 含复合材料结构的非黏结柔性立管弯曲特性[J]. 上海交通大学学报, 2022, 56(9): 1247-1255. |
[2] | 杨玲玉, 董顺, 洪长青. 新型低密度树脂裂解碳改性碳纤维复合材料的制备与性能研究[J]. 空天防御, 2022, 5(4): 1-9. |
[3] | 贾米芝, 徐澧明, 林楠, 南博华, 王坤, 蔡登安, 周光明. 具有回弹复位功能易裂盖的结构设计及力学性能研究[J]. 空天防御, 2022, 5(2): 8-16. |
[4] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[5] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[6] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[7] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[8] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
[9] | 栾建泽,那景新,慕文龙,谭伟,陈宏利. 低速加载对铝合金-玄武岩纤维增强树脂复合材料粘接接头失效的影响[J]. 上海交通大学学报, 2020, 54(11): 1200-1208. |
[10] | 刘海龙,张大旭,祁荷音,伍海辉,郭洪宝,洪智亮,陈超,张毅. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10): 1074-1083. |
[11] | 刘晓东,吴磊,孔谅,王敏,陈一东. 空气等离子处理对碳纤维增强复合材料表面特性及胶接性能的影响[J]. 上海交通大学学报, 2019, 53(8): 971-977. |
[12] | 李昱霖, 安庆升, 杨坤好, 唐晓峰, 刘龙涛. 防热承载一体化复合材料电缆罩分析及验证[J]. 空天防御, 2019, 2(3): 1-7. |
[13] | 杜思琦,王继崇,彭雄奇,顾海麟. 可生物降解的黄麻纤维/聚乳酸复合材料的制备和力学性能[J]. 上海交通大学学报, 2019, 53(11): 1335-1341. |
[14] | 杨万友,王家序,黄彦彦,周青华,杨勇. 热载荷作用下颗粒增强复合材料温升分布数值模拟[J]. 上海交通大学学报, 2019, 53(11): 1342-1351. |
[15] | 盛鸣剑,陈普会,钱一彬. 一种复材层合板低速冲击后压缩强度估算方法[J]. 上海交通大学学报, 2019, 53(10): 1182-1186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||