[1]张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2): 1-6.
ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6.
[2]高铁, 洪智亮, 杨娟. 商用航空发动机陶瓷基复合材料部件的研发应用及展望[J]. 航空制造技术, 2014, 6: 14-21.
GAO Tie, HONG Zhiliang, YANG Juan. Application and prospect of ceramic matrix composite components for commercial aircraft engine[J]. Aeronautical Manufacturing Technology, 2014, 6: 14-21.
[3]杨成鹏, 矫桂琼, 王波. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度[J]. 力学学报, 2011, 43(2): 330-337.
YANG Chengpeng, JIAO Guiqiong, WANG Bo. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 330-337.
[4]管国阳, 矫桂琼, 张增光. 2D-C/Si复合材料的宏观拉压特性和失效模式[J]. 复合材料学报, 2005, 22(4): 81-85.
GUAN Guoyang, JIAO Guiqiong, ZHANG Zengguang. Uniaxial macro-mechanical property and failure mode of a 2D-woven C/SiC composite[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 81-85.
[5]梅辉, 成来飞, 张立同, 等. 2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征[J]. 硅酸盐学报, 2007, 35(2): 137-143.
MEI Hui, CHENG Laifei, ZHANG Litong, et al. Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading[J]. Journal of the Chinese Ceramic Society, 2007, 35(2): 137-143.
[6]郭洪宝, 王波, 贾普荣, 等. 平纹编织陶瓷基复合材料面内剪切细观损伤行为研究[J]. 力学学报, 2016, 48(2): 361-368.
GUO Hongbao, WANG Bo, JIA Purong, et al. Mesoscopic damage behaviors of plain woven ceramic composite under in-plane shear loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 361-368.
[7]BERNACHY-BARBE F, GLBART L, BORNERT M, et al. Anisotropic damage behaviour of SiC/SiC composite tubes: Multiaxial testing and damage characterization[J]. Composites: Part A, 2015, 76: 281-288.
[8]HAYHURST D R, LECKIE F A, EVANS A G. Component design-based model for deformation and rupture of tough fibre-reinforced ceramic matrix composites[J]. Proceedings of the Royal Society A, 1991, 434(1891): 369-381.
[9]TANG C, BLACKLOCK M, HAYHURST D R. Uni-axial stress-strain response and thermal conductivity degradation of ceramic matrix composite fibre tows[J]. Proceedings of the Royal Society A, 2009, 465(2109): 2849-2876.
[10]TANG C, HAYHURST D R. Predictions of thermo-mechanical behaviour of a Nicalon-CAS 0°—90° ceramic matrix composite from constituent materials properties[J]. Journal of Composite Materials, 2011, 45(12): 1337-1350.
[11]TANG C, BLACKLOCK M, HAYHURST D R. Stress-strain response and thermal conductivity degradation of ceramic matrix composite fiber tows in 0°—90° uni-directional and woven composites[J]. Journal of Composite Materials, 2011, 45(14): 1461-1482.
[12]CHABOCHE J L, LESNE P M, MAIRE J F. Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites[J]. International Journal of Damage Mechanics, 1995, 4(1): 5-22.
[13]MAIRE J F, CHABOCHE J L. A new formulation of continuum damage mechanics (CDM) for composite materials[J]. Aerospace Science and Technology, 1997, 1(4): 247-257.
[14]CHABOCHE J L, MAIRE J F. New progress in micromechanics-based CDM models and their application to CMCs[J]. Composites Science and Technology, 2001, 61(15): 2239-2246.
[15]CAMUS G. Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: Application to a 2-D SiC/SiC[J]. International Journal of Solids and Structures, 2000, 37(6): 919-942.
[16]RAJAN V P, SHAW J H, ROSSOL M N, et al. An elastic-plastic constitutive model for ceramic composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 44-57.
[17]ASTM. Standard test method for monotonic tensile behavior of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperature: ASTM C1275-16[S]. Philadelphia, USA: ASTM International, 2000.
[18]ASTM. Standard test method for monotonic tensile strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at elevated temperatures: ASTM C1359-13[S]. Philadelphia, USA: ASTM International, 2000.
[19]MEI Hui, BAI Qianglai, LI Haiqing, et al. Effect of loading rate and temperature on monotonic tensile behavior in two-dimensional C/SiC composites[J]. Ceramics International, 2014, 40(10): 16635-16640.
[20]VAGAGINI E, DOMERGUE J, EVANS A. Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I. Theory[J]. Journal of the American Ceramic Society, 1995, 78(10): 2709-2720.
[21]王锟, 陈刘定, 郑翔. 平纹编织C/SiC复合材料在室温和高温环境下的拉伸行为[J]. 航空材料学报, 2010, 30(1): 78-84.
WANG Kun, CHEN Liuding, ZHENG Xiang. Comparison of tensile behavior of plain-woven carbon/silicon carbide composites at room temperature and high temperature[J]. Journal of Aeronautical Materials, 2010, 30(1): 78-84.
[22]REBILLAT F, GUETTE A, ESPITALIER L. Oxidation resistance of SiC/SiC micro and minicomposites with a highly crystallised BN interphase[J]. Journal of the European Ceramic Society, 1998, 18(13): 1809-1819.
[23]YANG Chengpeng, JIAO Guiqiong, WANG Bo, et al. Mechanical degradation mechanisms of 2D-C/SiC composites: Influence of preloading and oxidation[J]. Journal of the European Ceramic Society, 2015, 35(10): 2765-2773.
[24]吴守军. 3D SiC/SiC复合材料热化学环境行为[D]. 西安: 西北工业大学, 2006.
WU Shoujun. Themochemical environmental behaviors of 3D SiC/SiC composite[D]. Xi’an: Northwestern Polytechnical University, 2006. |