上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (1): 11-18.doi: 10.16183/j.cnki.jsjtu.2019.01.002
陈明明1,陈秀华2,张大旭1,伍海辉3,郭洪宝3,龚景海1
出版日期:
2019-01-28
发布日期:
2019-01-28
通讯作者:
张大旭,男,副教授,E-mail:daxu.zhang@sjtu.edu.cn.
作者简介:
陈明明(1987-),女,天津市人,博士生,主要研究方向为复合材料力学.
基金资助:
CHEN Mingming,CHEN Xiuhua,ZHANG Daxu,WU Haihui,GUO Hongbao,GONG Jinghai
Online:
2019-01-28
Published:
2019-01-28
摘要: 通过单向拉伸试验,对比研究平纹叠层SiC/SiC复合材料在室温和高温(1200℃)环境下的宏观力学特性,并采用扫描电镜对试验件断口进行观测,以分析其微观损伤模式和破坏机理.结果表明:平纹叠层SiC/SiC复合材料的室温和高温拉伸应力-应变行为均表现为非线性特征,具有较高的轴向拉伸基体开裂应力;两者拉伸强度相差不大,但高温下的断裂应变比室温下的高.从宏观断口分析可知,两者均呈现韧性断裂,但纤维拔出长度和断口平齐程度有所不同.材料内部产生的基体裂纹大部分与加载方向垂直;断面上经向纤维束发生纵向拉伸断裂破坏,内部存在严重的界面脱粘损伤以及纬向纤维束发生轴向劈裂破坏是材料在室温和高温下的拉伸破坏机理.高温下由于纤维与基体间的界面层在一定程度上被高温氧化而退化失效,使界面结合变弱和界面滑移力降低,从而产生较长的纤维拔出长度,所以高温下材料具有较高的断裂韧性.
中图分类号:
陈明明, 陈秀华, 张大旭, 伍海辉, 郭洪宝, 龚景海. 平纹叠层SiC/SiC复合材料室温和高温拉伸行为与破坏机理[J]. 上海交通大学学报, 2019, 53(1): 11-18.
CHEN Mingming, CHEN Xiuhua, ZHANG Daxu, WU Haihui, GUO Hongbao, GONG Jinghai. Tensile Behavior and Failure Mechanisms of Plain Weave SiC/SiC Composites at Room and High Temperatures[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 11-18.
[1]张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2): 1-6. ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6. [2]高铁, 洪智亮, 杨娟. 商用航空发动机陶瓷基复合材料部件的研发应用及展望[J]. 航空制造技术, 2014, 6: 14-21. GAO Tie, HONG Zhiliang, YANG Juan. Application and prospect of ceramic matrix composite components for commercial aircraft engine[J]. Aeronautical Manufacturing Technology, 2014, 6: 14-21. [3]杨成鹏, 矫桂琼, 王波. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度[J]. 力学学报, 2011, 43(2): 330-337. YANG Chengpeng, JIAO Guiqiong, WANG Bo. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 330-337. [4]管国阳, 矫桂琼, 张增光. 2D-C/Si复合材料的宏观拉压特性和失效模式[J]. 复合材料学报, 2005, 22(4): 81-85. GUAN Guoyang, JIAO Guiqiong, ZHANG Zengguang. Uniaxial macro-mechanical property and failure mode of a 2D-woven C/SiC composite[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 81-85. [5]梅辉, 成来飞, 张立同, 等. 2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征[J]. 硅酸盐学报, 2007, 35(2): 137-143. MEI Hui, CHENG Laifei, ZHANG Litong, et al. Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading[J]. Journal of the Chinese Ceramic Society, 2007, 35(2): 137-143. [6]郭洪宝, 王波, 贾普荣, 等. 平纹编织陶瓷基复合材料面内剪切细观损伤行为研究[J]. 力学学报, 2016, 48(2): 361-368. GUO Hongbao, WANG Bo, JIA Purong, et al. Mesoscopic damage behaviors of plain woven ceramic composite under in-plane shear loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 361-368. [7]BERNACHY-BARBE F, GLBART L, BORNERT M, et al. Anisotropic damage behaviour of SiC/SiC composite tubes: Multiaxial testing and damage characterization[J]. Composites: Part A, 2015, 76: 281-288. [8]HAYHURST D R, LECKIE F A, EVANS A G. Component design-based model for deformation and rupture of tough fibre-reinforced ceramic matrix composites[J]. Proceedings of the Royal Society A, 1991, 434(1891): 369-381. [9]TANG C, BLACKLOCK M, HAYHURST D R. Uni-axial stress-strain response and thermal conductivity degradation of ceramic matrix composite fibre tows[J]. Proceedings of the Royal Society A, 2009, 465(2109): 2849-2876. [10]TANG C, HAYHURST D R. Predictions of thermo-mechanical behaviour of a Nicalon-CAS 0°—90° ceramic matrix composite from constituent materials properties[J]. Journal of Composite Materials, 2011, 45(12): 1337-1350. [11]TANG C, BLACKLOCK M, HAYHURST D R. Stress-strain response and thermal conductivity degradation of ceramic matrix composite fiber tows in 0°—90° uni-directional and woven composites[J]. Journal of Composite Materials, 2011, 45(14): 1461-1482. [12]CHABOCHE J L, LESNE P M, MAIRE J F. Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites[J]. International Journal of Damage Mechanics, 1995, 4(1): 5-22. [13]MAIRE J F, CHABOCHE J L. A new formulation of continuum damage mechanics (CDM) for composite materials[J]. Aerospace Science and Technology, 1997, 1(4): 247-257. [14]CHABOCHE J L, MAIRE J F. New progress in micromechanics-based CDM models and their application to CMCs[J]. Composites Science and Technology, 2001, 61(15): 2239-2246. [15]CAMUS G. Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: Application to a 2-D SiC/SiC[J]. International Journal of Solids and Structures, 2000, 37(6): 919-942. [16]RAJAN V P, SHAW J H, ROSSOL M N, et al. An elastic-plastic constitutive model for ceramic composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 44-57. [17]ASTM. Standard test method for monotonic tensile behavior of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperature: ASTM C1275-16[S]. Philadelphia, USA: ASTM International, 2000. [18]ASTM. Standard test method for monotonic tensile strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at elevated temperatures: ASTM C1359-13[S]. Philadelphia, USA: ASTM International, 2000. [19]MEI Hui, BAI Qianglai, LI Haiqing, et al. Effect of loading rate and temperature on monotonic tensile behavior in two-dimensional C/SiC composites[J]. Ceramics International, 2014, 40(10): 16635-16640. [20]VAGAGINI E, DOMERGUE J, EVANS A. Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I. Theory[J]. Journal of the American Ceramic Society, 1995, 78(10): 2709-2720. [21]王锟, 陈刘定, 郑翔. 平纹编织C/SiC复合材料在室温和高温环境下的拉伸行为[J]. 航空材料学报, 2010, 30(1): 78-84. WANG Kun, CHEN Liuding, ZHENG Xiang. Comparison of tensile behavior of plain-woven carbon/silicon carbide composites at room temperature and high temperature[J]. Journal of Aeronautical Materials, 2010, 30(1): 78-84. [22]REBILLAT F, GUETTE A, ESPITALIER L. Oxidation resistance of SiC/SiC micro and minicomposites with a highly crystallised BN interphase[J]. Journal of the European Ceramic Society, 1998, 18(13): 1809-1819. [23]YANG Chengpeng, JIAO Guiqiong, WANG Bo, et al. Mechanical degradation mechanisms of 2D-C/SiC composites: Influence of preloading and oxidation[J]. Journal of the European Ceramic Society, 2015, 35(10): 2765-2773. [24]吴守军. 3D SiC/SiC复合材料热化学环境行为[D]. 西安: 西北工业大学, 2006. WU Shoujun. Themochemical environmental behaviors of 3D SiC/SiC composite[D]. Xi’an: Northwestern Polytechnical University, 2006. |
[1] | 刘庆升, 薛鸿祥, 袁昱超, 唐文勇. 含复合材料结构的非黏结柔性立管弯曲特性[J]. 上海交通大学学报, 2022, 56(9): 1247-1255. |
[2] | 曹拯, 雷学林, 张航, 蔡晓江. 聚酰亚胺的冷风微量润滑辅助切削工艺[J]. 上海交通大学学报, 2022, 56(6): 784-793. |
[3] | 杨玲玉, 董顺, 洪长青. 新型低密度树脂裂解碳改性碳纤维复合材料的制备与性能研究[J]. 空天防御, 2022, 5(4): 1-9. |
[4] | 贾米芝, 徐澧明, 林楠, 南博华, 王坤, 蔡登安, 周光明. 具有回弹复位功能易裂盖的结构设计及力学性能研究[J]. 空天防御, 2022, 5(2): 8-16. |
[5] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[6] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[7] | 王锐, 薛鸿祥, 袁昱超, 唐文勇. 高温环境下海洋平台防爆墙结构冲击动力响应特性研究[J]. 上海交通大学学报, 2021, 55(8): 968-975. |
[8] | 张松林, 马栋梁, 王德禹. 基于长短期记忆神经网络的板裂纹损伤检测方法[J]. 上海交通大学学报, 2021, 55(5): 527-535. |
[9] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[10] | 刘昶江, 赵兵, 陈务军. 不同温度下的乙烯-三氟氯乙烯共聚物薄膜单轴拉伸试验[J]. 上海交通大学学报, 2021, 55(4): 387-393. |
[11] | 蒋怡涵, 吴佳松, 王武荣, 韦习成. 模具温升对22MnB5硼钢裸板高温摩擦磨损特性的影响[J]. 上海交通大学学报, 2021, 55(3): 258-264. |
[12] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[13] | 管清宇, 夏品奇, 郑晓玲, 吴光辉. 复合材料层压板冲击后压缩强度拟合模型[J]. 上海交通大学学报, 2021, 55(11): 1459-1466. |
[14] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
[15] | 张云浩,阿力木·安外尔,米翔,张大旭,陈务军,鲁国富,张金奎. 短期老化与折皱损伤对飞艇囊体材料空气泄漏性能的影响[J]. 上海交通大学学报, 2020, 54(11): 1189-1199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||