上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (5): 580-591.doi: 10.16183/j.cnki.jsjtu.2023.329
高波1, 李飞1, 史轮1, 陶鹏1, 石振刚1, 张超1, 彭杰2(), 赵一伊2
收稿日期:
2023-07-20
修回日期:
2023-12-03
接受日期:
2023-12-22
出版日期:
2025-05-28
发布日期:
2025-06-05
通讯作者:
彭 杰,博士生;E-mail:2248257810@qq.com.
作者简介:
高 波(1989—),工程师,主要从事用电信息采集研究工作.
基金资助:
GAO Bo1, LI Fei1, SHI Lun1, TAO Peng1, SHI Zhengang1, ZHANG Chao1, PENG Jie2(), ZHAO Yiyi2
Received:
2023-07-20
Revised:
2023-12-03
Accepted:
2023-12-22
Online:
2025-05-28
Published:
2025-06-05
摘要:
随着需求侧能耗的日益提升,居民用户能源消费产生了大量的碳排放,居民社区具有较大的减排潜力.针对社区综合能源系统低碳经济运行问题,考虑能-碳价格的联动,建立了基于实时碳强度评估的综合能源系统低碳互动管理策略.首先建立了社区综合能源系统架构,在此基础上提出了考虑消纳等效碳减排量的居民侧碳排放计量方法.其次,设计基于实时碳强度评估的低碳需求响应机制,引导用户通过多能互补实现碳减排和新能源消纳.然后,建立了综合能源系统供给侧调度模型和用户侧响应模型,通过供需双侧的多能耦合和供需互动实现低碳经济运行.最后,通过仿真验证了所提实时碳强度评估机制能够有效降低综合能源系统碳排放.
中图分类号:
高波, 李飞, 史轮, 陶鹏, 石振刚, 张超, 彭杰, 赵一伊. 基于实时碳强度评估的社区综合能源系统低碳互动管理策略[J]. 上海交通大学学报, 2025, 59(5): 580-591.
GAO Bo, LI Fei, SHI Lun, TAO Peng, SHI Zhengang, ZHANG Chao, PENG Jie, ZHAO Yiyi. A Low-Carbon Interactive Management Strategy for Community Integrated Energy System Based on Real-Time Carbon Intensity Assessment[J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 580-591.
[1] | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207. |
ZHANG Shenxi, WANG Danyang, CHENG Hao-zhong, et al. Key technologies and challenges for low-carbon integrated energy system planning under dual-carbon goals[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207. | |
[2] | XIANG Y, FANG M Q, LIU J Y, et al. Distributed dispatch of multiple energy systems considering carbon trading[J]. CSEE Journal of Power and Energy Systems, 2023, 9(2): 459-469. |
[3] |
张程, 匡宇, 陈文兴, 等. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5): 669-681.
doi: 10.16183/j.cnki.jsjtu.2022.364 |
ZHANG Cheng, KUANG Yu, CHEN Wenxing, et al. Low-carbon economic optimization operation of integrated energy system considering electric vehicle charging modes and multi-energy coupling[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 669-681. | |
[4] | 刘妍, 胡志坚, 陈锦鹏, 等. 含碳捕集电厂与氢能多元利用的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48(1): 31-40. |
LIU Yan, HU Zhijian, CHENG Jinpeng, et al. Low-carbon economic scheduling of integrated energy system with carbon capture power plants and multi-utilization of hydrogen energy[J]. Automation of Electric Power Systems, 2024, 48(1): 31-40. | |
[5] |
孙毅, 谷家训, 郑顺林, 等. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658.
doi: 10.16183/j.cnki.jsjtu.2022.350 |
SUN Yi, GU Jiaxun, ZHENG Shunlin, et al. Low-carbon optimization operation strategy of integrated energy system considering generalized energy storage and LCA carbon emissions[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658. | |
[6] | ALOMOUSH M I. Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax[J]. Energy Conversion and Management, 2019, 200: 112090. |
[7] | LYU X, LIU T, LIU X, et al. Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid[J]. Energy, 2023, 263(B): 125739. |
[8] | ZHU X, SUN Y, YANG J, et al. Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses[J]. Energy, 2022, 251: 123914. |
[9] | YANG D F, XU Y, LIU X J, et al. Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture technologies[J]. Energy, 2022, 253:124153. |
[10] | YUAN G X, GAO Y, YE B, et al. Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response[J]. Renewable Energy, 2021, 179: 1424-1446. |
[11] | LI P, WANG Z X, WANG N, et al. Stochastic robust optimal operation of community integrated energy systems based on integrated demand response[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106735. |
[12] | GOH H H, SHI S W, LIANG X, et al. Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty[J]. Applied Energy, 2022, 327: 120094. |
[13] | EDUARDO C B, KIYOTO T, ANDREJ K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[M]. UK: Cambridge University Press, 2007: 10-28. |
[14] | LU Q, GUO Q, ZENG W, et al. Optimization scheduling of integrated energy service systems in the community: A bi-layer optimization model considering multi-energy demand response and user satisfaction[J]. Energy, 2022, 252: 124063. |
[15] | LI L, ZHANG S, CAO X, et al. Assessing economic and environmental performance of multi-energy sharing communities considering different carbon emission responsibilities under the carbon tax policy[J]. Journal of Cleaner Production, 2021, 328: 129466. |
[16] | KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow in networks[J]. Scientific Reports, 2012, 2(1): 479. |
[17] | CHENG Y, ZHANG N, ZHANG B, et al. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2019, 11(2): 1307-1318. |
[18] | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Research and benefit analysis of low-carbon demand response mechanism in power systems based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2842. | |
[19] | YAN Z C, LI C Y, YAO Y M, et al. Bi-level carbon trading model on demand side for integrated electricity-gas system[J]. IEEE Transactions on Smart Grid, 2023, 14(4): 2681-2696. |
[20] | 中华人民共和国生态环境部. 企业温室气体排放核算方法与报告指南——发电设施(2022年修订版) [EB/OL]. (2022-12-21) [2023-07-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html . |
Ministry of Ecology and Environment of the People’s Republic of China. Accounting methods and reporting guidelines for greenhouse gas emissions of enterprises—Generating facility (revised in 2022) [EB/OL]. (2022-12-21) [2023-07-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html . | |
[21] | 北京市市场监督管理局. 二氧化碳排放核算和报告要求——电力生产业:DB11/T 1781—2020[EB/OL]. (2021-01-01) [2023-07-20]. https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/ydqhbh/10914037/index.html . |
Beijing Market Supervision Administration. Requirements for carbon dioxide emission accounting and reporting—Power generation enterprises:DB11/T 1781—2020[EB/OL]. (2021-01-01) [2023-07-20]. https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/ydqhbh/10914037/index.html . |
[1] | 黄逸翔, 窦迅, 李林溪, 杨函煜, 于建成, 霍现旭. 基于全局灵敏度分析的综合能源设备响应价值量化方法[J]. 上海交通大学学报, 2025, 59(5): 569-579. |
[2] | 李建林, 张则栋, 梁策, 曾飞. 计及源-荷不确定性的综合能源系统多目标鲁棒优化调度[J]. 上海交通大学学报, 2025, 59(2): 175-185. |
[3] | 周思怡, 杨欢红, 黄文焘, 周泽, 焦伟, 杨镇瑜. 集装箱港口综合能源系统日前-日内两阶段滚动优化调度[J]. 上海交通大学学报, 2024, 58(9): 1357-1369. |
[4] | 米阳, 付起欣, 赵海辉, 马思源, 王育飞. 考虑源荷多区间不确定集和综合需求响应的微能源网鲁棒优化调度[J]. 上海交通大学学报, 2024, 58(9): 1323-1333. |
[5] | 李冰洁, 袁晓昀, 史静, 徐华池, 罗子萱. 综合能源系统电气热多能量流建模及优化[J]. 上海交通大学学报, 2024, 58(9): 1297-1308. |
[6] | 林森, 文书礼, 朱淼, 戴群, 鄢伦, 赵耀, 叶惠丽. 考虑碳交易机制的海港综合能源系统电-热混合储能优化配置[J]. 上海交通大学学报, 2024, 58(9): 1344-1356. |
[7] | 王金锋, 王琪, 任正某, 孙晓晨, 孙毅, 赵一伊. 基于联邦强化学习的电热综合能源系统能量管理策略[J]. 上海交通大学学报, 2024, 58(6): 904-915. |
[8] | 尚梦琪, 高红均, 贺帅佳, 刘俊勇. 考虑阶梯碳奖惩和综合需求响应的楼宇低碳规划[J]. 上海交通大学学报, 2024, 58(6): 926-940. |
[9] | 范宏, 邢梦晴, 王兰坤, 田书欣. 考虑氢储的风光氢综合能源系统多时间尺度随机生产模拟[J]. 上海交通大学学报, 2024, 58(6): 881-892. |
[10] | 张程, 匡宇, 陈文兴, 郑杨. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5): 669-681. |
[11] | 付文溪, 窦真兰, 张春雁, 王玲玲, 蒋传文, 熊展. 计及动态碳排放因子的多H2-IES双层优化运行方法[J]. 上海交通大学学报, 2024, 58(5): 610-623. |
[12] | 孙毅, 谷家训, 郑顺林, 李熊, 陆春光, 刘炜. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658. |
[13] | 范宏, 杨忠权, 夏世威. 考虑阶梯式碳交易机制的混氢天然气综合能源系统低碳经济运行[J]. 上海交通大学学报, 2024, 58(5): 624-635. |
[14] | 刘炳文, 吴雄, 曹滨睿, 麻淞, 何雯雯. 基于增强型Benders分解的区域综合能源系统联合规划[J]. 上海交通大学学报, 2024, 58(10): 1513-1523. |
[15] | 范宏, 何杰, 田书欣. 变步长仿真与改进熵权法联动的综合能源系统鲁棒性评估方法[J]. 上海交通大学学报, 2024, 58(1): 59-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||