上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (6): 904-915.doi: 10.16183/j.cnki.jsjtu.2022.418

• 新型电力系统与综合能源 • 上一篇    下一篇

基于联邦强化学习的电热综合能源系统能量管理策略

王金锋1, 王琪2(), 任正某1, 孙晓晨1, 孙毅2, 赵一伊2   

  1. 1.国网陕西省电力有限公司经济技术研究院,西安 710065
    2.华北电力大学 电气与电子工程学院,北京 102206
  • 收稿日期:2022-10-20 修回日期:2023-03-06 接受日期:2023-03-09 出版日期:2024-06-28 发布日期:2024-07-05
  • 通讯作者: 王琪,硕士生;E-mail: 455951466@qq.com.
  • 作者简介:王金锋(1984-),博士,高级工程师,从事电力需求侧管理、综合能源服务、电力市场、碳资产管理研究.
  • 基金资助:
    国网陕西省电力有限公司科技项目(5226SX21N036)

Energy Management Strategy of Integrated Electricity-Heat Energy System Based on Federated Reinforcement Learning

WANG Jinfeng1, WANG Qi2(), REN Zhengmou1, SUN Xiaochen1, SUN Yi2, ZHAO Yiyi2   

  1. 1. Economic Research Institute, State Grid Shaanxi Electric Power Company, Xi’an 710065, China
    2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2022-10-20 Revised:2023-03-06 Accepted:2023-03-09 Online:2024-06-28 Published:2024-07-05

摘要:

电热综合能源系统(IES)的能量管理关系到园区的经济效益与多能互补能力,但面临新能源出力随机性和用户负荷不确定性的挑战.首先,构建电热IES能量管理问题的数学模型,将各供能子系统赋能为智能体,基于深度确定性策略梯度(DDPG)算法建立综合考虑子系统实时用能负荷、分时电价及各设备出力的系统能量管理模型.然后,采用联邦学习技术,在训练过程中交互3个子系统的能量管理模型梯度参数对模型的训练效果进行协同优化,打破数据壁垒的同时保护各子系统数据隐私.最后,通过算例分析验证了所构建基于联邦学习框架的DDPG能量管理模型能有效提升园区IES经济效益.

关键词: 综合能源系统, 联邦学习, 能量管理, 深度确定性策略梯度

Abstract:

The energy management of the electricity-heating integrated energy system (IES) is related to the economic benefits and multi-energy complementary capabilities of a park, but it faces the challenges of the randomness of renewable energy and the uncertainty of load. First, in this paper, a mathematical model of the energy management problem for the electricity-heating IES is conducted, and each energy supply subsystem is empowered as an agent. Based on the deep deterministic policy gradient (DDPG) algorithm, a system energy management model is established that comprehensively considers the real-time energy load of the subsystem, the time-of-use pricing, and the output of each equipment. Then, the federated learning technology is used to interact with the gradient parameters of the energy management model of the three subsystems during the training process to synergistically optimize the training effect of the model, which can protect the data privacy of each subsystem while breaking the data barriers. Finally, an example analysis verifies that the proposed federated-DDPG energy management model can effectively improve the economic benefits of the park-level IES.

Key words: integrated energy system (IES), federated learning, energy management, deep deterministic policy gradient (DDPG)

中图分类号: