上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (8): 1078-1085.doi: 10.16183/j.cnki.jsjtu.2022.043
所属专题: 《上海交通大学学报》2023年“材料科学与工程”专题
收稿日期:
2022-02-28
修回日期:
2022-04-13
接受日期:
2022-05-24
出版日期:
2023-08-28
发布日期:
2023-08-31
通讯作者:
疏 达,教授; E-mail: 作者简介:
李维汉(1998-),硕士生,主要从事金刚石材料制备.
基金资助:
LI Weihan1, QIAO Yu2, SHU Da1,3(), WANG Xinchang2
Received:
2022-02-28
Revised:
2022-04-13
Accepted:
2022-05-24
Online:
2023-08-28
Published:
2023-08-31
摘要:
金刚石具有极高的导热系数,在热管理中具有广阔的应用前景.基于热丝化学气相沉积法,采用多次沉积工艺在碳化硅表面制备了金刚石厚膜.采用扫描电子显微镜和拉曼光谱仪对金刚石膜进行了表征,系统地研究了热丝功率、碳源浓度和反应压力等工艺参数对金刚石生长速率及质量的影响.研究结果表明,当热丝功率为1 600 W、碳源浓度在形核阶段为18/300和生长阶段为14/300、反应压力为4 kPa时制备的金刚石膜质量最佳,此时金刚石膜生长速率约为1.4 μm/h.
中图分类号:
李维汉, 乔煜, 疏达, 王新昶. 面向散热应用的碳化硅表面热丝化学气相沉积金刚石膜生长速率[J]. 上海交通大学学报, 2023, 57(8): 1078-1085.
LI Weihan, QIAO Yu, SHU Da, WANG Xinchang. Growth Rates of HFCVD Diamond Films on Silicon Carbide Substrates for Heat Dissipation Applications[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1078-1085.
[1] | 贾鑫, 魏俊俊, 黄亚博, 等. 金刚石散热衬底在GaN基功率器件中的应用进展[J]. 表面技术, 2020, 49(11): 111-123. |
JIA Xin, WEI Junjun, HUANG Yabo, et al. Application progress of diamond heat dissipation substrate in GaN-based power devices[J]. Surface Technology, 2020, 49(11): 111-123. | |
[2] | 张旺玺. 化学气相沉积法合成金刚石的研究进展[J]. 陶瓷学报, 2021, 42(4): 537-546. |
ZHANG Wangxi. Research progress in synthesis of diamond prepared with chemical vapour deposition (CVD)[J]. Journal of Ceramics, 2021, 42(4): 537-546. | |
[3] | 戴达煌, 周克崧. 金刚石薄膜沉积制备工艺与应用[M]. 北京: 冶金工业出版社, 2001: 9-13. |
DAI Dahuang, ZHOU Kesong. Preparation process and application of diamond thin film deposition[M]. Beijing: Metallurgical Industry Press, 2001: 9-13. | |
[4] |
MONTES GUTIERREZ J A, ALCANTAR PENA J J, DE OBALDIA E, et al. Afterglow, thermoluminescence and optically stimulated luminescence characterization of micro-, nano-and ultrananocrystalline diamond films grown on silicon by HFCVD[J]. Diamond and Related Materials, 2018, 85: 117-124.
doi: 10.1016/j.diamond.2018.03.031 URL |
[5] |
CHEN N C, PU L W, SUM F H, et al. Tribological behavior of HFCVD multilayer diamond film on silicon carbide[J]. Surface & Coatings Technology, 2015, 272: 66-71.
doi: 10.1016/j.surfcoat.2015.04.023 URL |
[6] |
PENG J H, ZENG J W, XIONG C, et al. The effect of interlayer reactivity on the quality of diamond coating by HFCVD deposition[J]. Journal of Alloys and Compounds, 2020, 835: 155035.
doi: 10.1016/j.jallcom.2020.155035 URL |
[7] |
WANG H, WANG C C, WANG X C, et al. Effects of carbon concentration and gas pressure with hydrogen-rich gas chemistry on synthesis and characterizations of HFCVD diamond films on WC-Co substrates[J]. Surface & Coatings Technology, 2021, 409: 126839.
doi: 10.1016/j.surfcoat.2021.126839 URL |
[8] |
DENG F M, HAO C, GUO Z H, et al. Effects of carbonization of filaments on CVD diamond thick films prepared by HFCVD method[J]. Journal of Superhard Materials, 2020, 42(5): 340-347.
doi: 10.3103/S1063457620050160 |
[9] |
DAMM D D, CONTIN A, CARDOSO L D R, et al. A novel method to mitigate residual stress in CVD diamond film on steel substrates with a single intermediate layer[J]. Surface & Coatings Technology, 2019, 357: 93-102.
doi: 10.1016/j.surfcoat.2018.09.067 URL |
[10] | 陈波. YG6硬质合金基体表面沉积金刚石碳化硅复合薄膜研究[D]. 重庆: 重庆理工大学, 2019. |
CHEN Bo. Deposition of diamond silicon-carbide composite film on YG6 cemented carbide substrate[D]. Chongqing: Chongqing University of Technology, 2019. | |
[11] | WANG X, CUI Y, ZHANG J, et al. Erosive wear performance of boron-doped diamond films on different substrates[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 228(3): 352-361. |
[12] | 严朝辉, 汪建华, 满卫东, 等. CVD金刚石厚膜的机械抛光研究[J]. 金刚石与磨料磨具工程, 2007(3): 32-35. |
YAN Zhaohui, WANG Jianhua, MAN Weidong, et al. Study of mechanical polishing of CVD diamond thick films[J]. Diamond & Abrasive Engineering, 2007(3): 32-35. | |
[13] | 王新昶. 高性能金刚石薄膜的制备, 摩擦学性能及其在内孔表面的应用研究[D]. 上海: 上海交通大学, 2015. |
WANG Xinchang. Study on fabrication, tribological properties of high performance diamond films and application on hole surface[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
[14] |
MUKHERJEE D, OLIVEIRA F, TRIPPE S C, et al. Deposition of diamond films on single crystalline silicon carbide substrates[J]. Diamond and Related Materials, 2019, 101: 107625.
doi: 10.1016/j.diamond.2019.107625 URL |
[15] | CHEN N C, SUN F H. Effect of multilayer technology on surface properties of diamond coated silicon carbide with surface defects[J]. Applied Mechanics & Materials, 2012, 217-219: 1318-1322. |
[16] |
PRABHAKARAN G S, BHATTACHARYA S, RAO M. A comparative study of the mechanical and tribological properties of intermittently and continuously grown multilayer diamond films on RB-SiC[J]. Diamond and Related Materials, 2020, 110: 108140.
doi: 10.1016/j.diamond.2020.108140 URL |
[17] | 赵刚, 赵江, 张亚非. 金刚石晶体生长研究进展[J]. 上海交通大学学报, 2010, 44(4): 584-587. |
ZHAO Gang, ZHAO Jiang, ZHANG Yafei. Research progress on synthetic diamond crystals[J]. Journal of Shanghai Jiao Tong University, 2010, 44(4): 584-587. | |
[18] |
ALI M, UERGEN M. Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations[J]. Applied Surface Science, 2011, 257(20): 8420-8426.
doi: 10.1016/j.apsusc.2011.04.097 URL |
[19] |
TAKAMORI Y, NAGAI M, TABAKOYA T, et al. Insight into temperature impact of Ta filaments on high-growth-rate diamond (100) films by hot-filament chemical vapor deposition[J]. Diamond and Related Materials, 2021, 118: 108515.
doi: 10.1016/j.diamond.2021.108515 URL |
[20] |
SU Q F, SHI W M, LI D M, et al. Effects of carbon concentration on properties of nano-diamond films[J]. Applied Surface Science, 2012, 258(10): 4645-4648.
doi: 10.1016/j.apsusc.2012.01.047 URL |
[21] |
WENG J, LIU F, XIONG L W, et al. Investigation on the influence of high deposition pressure on the mcirostructure and hydrogen impurity incorporated in nanocrystalline diamond films[J]. Journal of Crystal Growth, 2018, 495: 1-8.
doi: 10.1016/j.jcrysgro.2018.05.011 URL |
[1] | 邹琳, 闫豫龙, 陶凡, 柳迪伟, 郑云龙. 波浪锥型风力俘能结构能量转换效率[J]. 上海交通大学学报, 2023, 57(8): 1067-1077. |
[2] | 张建, 胡小锋, 张亚辉. 基于自步学习的刀具加工过程监测数据异常检测方法[J]. 上海交通大学学报, 2023, 57(10): 1346-1354. |
[3] | 余威, 杨欢红, 焦伟, 周泽. 基于优劣解距离算法的光储配电网自适应虚拟惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1317-1324. |
[4] | 惠久武, 凌君, 栾振华, 王改霞, 董贺, 袁景淇. 核电站蒸汽发生器再循环水质量流量实时估计方法[J]. 上海交通大学学报, 2022, 56(1): 21-27. |
[5] | 沈慧, 刘世民, 许敏俊, 黄德林, 鲍劲松, 郑小虎. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报, 2022, 56(1): 70-80. |
[6] | 庞宇, 黄文焘, 吴骏, 邰能灵, 孙国亮. 船舶大功率脉冲负载抗冲击供电系统[J]. 上海交通大学学报, 2021, 55(10): 1197-1209. |
[7] | 尤舒曼, 李杰, 赵亦希, 胡逸辉. 柔性翻边成形工艺参数研究[J]. 上海交通大学学报, 2021, 55(10): 1246-1254. |
[8] | 王飞, 丁伟, 邓德衡, 吴小峰. 水下多缆多体拖曳系统运动建模与模拟计算[J]. 上海交通大学学报, 2020, 54(5): 441-450. |
[9] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
[10] | 马哲,周婷,孙家文,房克照,翟钢军. 基于改进质量源造波方法的非线性波数值模拟[J]. 上海交通大学学报, 2020, 54(1): 60-68. |
[11] | 肖鹏,刘宏春,简一帆,赵阳,李伟,唐涛. 对核电厂DCS中信号质量位设置问题的思考[J]. 上海交通大学学报, 2019, 53(Sup.1): 12-16. |
[12] | 李健,陆繁莉,董威,蔡一凡,许梦玫. 基于数值模拟的芯片冷却散热器结构优化[J]. 上海交通大学学报(自然版), 2019, 53(4): 461-467. |
[13] | 赵亮,张巍,贺治国,谈利明,蒋后硕. 层结环境中浮力羽流的质量输移过程[J]. 上海交通大学学报(自然版), 2019, 53(4): 473-479. |
[14] | 郭春雨1,刘恬1,赵庆新1,郝浩浩2. 短波中标称伴流场特性分析[J]. 上海交通大学学报(自然版), 2019, 53(2): 170-178. |
[15] | 梁园华, 韦斯俊, 孙政策, 杨清峡. 深水张紧式聚酯缆系泊系统疲劳分析研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 226-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||