上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (10): 1346-1354.doi: 10.16183/j.cnki.jsjtu.2022.234

所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题

• 机械与动力工程 • 上一篇    下一篇

基于自步学习的刀具加工过程监测数据异常检测方法

张建a, 胡小锋a(), 张亚辉b   

  1. a.上海交通大学 机械与动力工程学院, 上海 200240
    b.上海交通大学 海洋装备研究院, 上海 200240
  • 收稿日期:2022-06-21 修回日期:2022-07-22 接受日期:2022-09-08 出版日期:2023-10-28 发布日期:2023-10-31
  • 通讯作者: 胡小锋 E-mail:wshxf@sjtu.edu.cn
  • 作者简介:张建(1997-),硕士生,现主要从事刀具磨损预测研究.
  • 基金资助:
    国防基础科研计划项目(JCKY2021110B048);国家重点研发计划资助项目(2018YFB1700502)

Abnormal Detection Method of Tool Machining Monitoring Data Based on Self-Paced Learning

ZHANG Jiana, HU Xiaofenga(), ZHANG Yahuib   

  1. a. School of Mechanical Engineering, Shanghai 200240, China
    b. Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-06-21 Revised:2022-07-22 Accepted:2022-09-08 Online:2023-10-28 Published:2023-10-31
  • Contact: HU Xiaofeng E-mail:wshxf@sjtu.edu.cn

摘要:

针对零件加工过程的监控数据异常导致刀具剩余寿命预测准确性下降的问题,提出一种基于自步学习的数据异常检测方法.首先建立多层感知机模型关联刀具加工过程监测数据和所对应的刀具剩余寿命;其次在模型权重更新过程中,先固定模型权重参数,预测损失拟合高斯分布得到异常样本的损失阈值,然后构建基于自步学习方法的损失函数,迭代更新模型参数.在模型训练结束后,根据损失阈值划分出异常样本.最后利用汽轮机转子轮槽的实际加工监测数据进行验证,并与局部异常因子算法、基于密度的聚类算法、 K 均值算法、孤立森林算法、一分类支持向量机等方法进行对比分析,验证本方法的有效性.

关键词: 刀具加工监测, 数据质量, 异常检测, 自步学习

Abstract:

Aimed at the problem that the accuracy of tool remaining life prediction was reduced due to the abnormal monitoring data in machining process, a data anomaly detection method based on self-paced learning was proposed. First, a multi-layer perceptron model was established to correlate the tool processing monitoring data with the tool remaining life. Next, in the process of updating model weight, the model weight parameters were fixed first, and the loss threshold of abnormal samples was obtained by predicting loss fitting Gaussian distribution. Then, the loss function based on the self-paced learning method was constructed to update model parameters iteratively. At the end of the model training, abnormal samples were divided according to the loss threshold. Finally, the actual processing monitoring data of turbine rotor groove were used to verify the proposed method, and compare with the local anomaly factor algorithm, the density-based clustering algorithm, the K-means algorithm, the isolated forest algorithm, and the one-class support vector machines.

Key words: tool machining monitoring, data quality, anomaly detection, self-paced learning

中图分类号: